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Abstract. An input-output relation for a wide class of program special-
izers for a simple functional language in the form of Natural Semantics
inference rules is presented. It covers polygenetic specialization, which in-
cludes deforestation and supercompilation, and generalizes the author’s
previous paper on specification of monogenetic specialization like partial
evaluation and restricted supercompilation.
The specialization relation expresses the idea of what is to be a specialized
program, avoiding as much as possible the details of how a specializer
builds it. The relation specification follows the principles of Turchin’s
supercompilation and captures its main notions: configuration, driving,
generalization of a configuration, splitting a configuration, as well as
collapsed-jungle driving. It is virtually a formal definition of supercompi-
lation abstracting away the most sophisticated parts of supercompilers—
strategies of configuration analysis.
Main properties of the program specialization relation—idempotency,
transitivity, soundness, completeness, correctness—are formulated and
discussed.

Keywords: specialization, input-output relation, partial evaluation, su-
percompilation, correctness.

1 Introduction

Program specialization is an equivalence transformation. A specializer spec maps
a source program p to a residual program q , which is equivalent to p on a given
subset D of the domain of the program p : q = spec(p, D). The equivalence of
the source and residual programs is understood extensionally, that is, noncon-
structively: p ≈D q if for all d ∈ D : p(d) = q(d) or both p(d) and q(d) do not
terminate. The correctness of specializers is usually proven by reducing it to the
extensional equivalence [4,2,11]:

q = spec(p, D) ⇒ p ≈D q.

? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a and
No. 08-07-00280-a and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.
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In this paper we define a constructive, intensional relation of specialization,
that is, a relation of equivalence of source and residual programs, which many
specialization methods satisfy, including partial evaluation [5], deforestation [18],
supercompilation [16,17]. Let p 'D q denote such intensional equivalence of a
source program p and a residual one q on a set D of input data values. To
be correct, it must be a subset of the extensional relation, (') ⊂ (≈), that is,
p 'D q ⇒ p ≈D q . The intensional relation provides a shorter way for proving
the correctness of specializers than the extensional equivalence does:

q = spec(p,D) ⇒ p 'D q ⇒ p ≈D q.

The specialization relation is defined in this paper by inference rules in the
style of Natural Semantics [6]. The rules serve as formal specification of a wide
class of specializers. By the nature of Natural Semantics, the specification allows
for automated derivation of specializers as well as checkers of the correctness
of residual programs, which can help in debugging practical specializers. Some
notions (e.g. driving) are defined precisely enough to unambiguously derive the
corresponding algorithm by the well-known methods. Other notions (e.g. gener-
alization and splitting configurations) are defined with certain degrees of freedom
to allow for various decision-taking algorithms and strategies.

The specialization relation is based on the ideas of supercompilation, but
agrees with partial evaluation and deforestation as well. The inference rules
model at abstract level the operational behavior of supercompilers. All essential
notions of supercompilation are captured: configuration, driving, generalization
of a configuration, splitting a configuration, as well as collapsed-jungle driving
[12,13], while abstracting from the problems of algorithmic decisions of when,
what and how to generalize and when to terminate.

In paper [8] a similar specialization relation was presented for the simpler
case of monogenetic specialization [10] where any program point in the resid-
ual program is produced from a single program point of the source program. In
this paper the relation definition is developed further to polygenetic specializa-
tion [10] where a residual program point is produced from one or several source
program points. Monogenetic specialization includes partial evaluation but ex-
cludes deforestation and supercompilation. Polygenetic specialization covers all
of them. For completeness sake, the basic notions and the definition of driving
from [8] are repeated in Section 2, Figs. 6, 7.

The main contributions of the paper are as follows:

– a complete formal definition of what supercompilation is, in form of an input-
output specialization relation, is given;

– several interesting properties that the presented specialization relation obeys
are formulated and related to each other: idempotency, transitivity, sound-
ness, completeness, correctness.

The paper is organized as follows. A simple object language, which is both
the source and target language of specializers, is presented in Section 2.1 together
with semantic domains for interpretation and supercompilation. In Section 2.2
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k ∈ Atom atomic data
x ∈ Data ground data
z ∈ CData configuration data
a ∈ Arg source arguments
d ∈ Prim source primitives
s ∈ Term source program terms
r ∈ Term residual program terms
v ∈ Var source program variables
u ∈ Var residual program variables

and configuration variables
l ∈ LVar liaison variables
f ∈ FName function names
p ∈ Prog source programs
q ∈ Prog residual programs
b ∈ Args argument bindings
c ∈ Contr contractions

∆ ∈ Expl explications
d, s ∈ MConf monogenetic configurations

z |∆ ∈ PConf polygenetic configurations
m ∈ CMap mapping of residual function

names to configurations

k ::= True | False | Nil | . . .
x ::= k | Cons x x
z ::= k | Cons z z | u | l
a ::= z | Cons a a | v
d ::= a | fst v | snd v

| cons? v | equ? v a
s ::= d

| if v then s1 else s2

| let v = s1 in s2

| call f b

Prog = FName → Term
Args = Var → Arg
Contr = Var → CData
Expl = LVar → MConf
MConf = Term
PConf = CData× Expl
CMap = FName → PConf

Fig. 1. Object language syntax and semantic domains

the notion of configuration is introduced. In Section 2.3 the operation of substi-
tution as it is used in this paper is defined. Section 2.4 discusses the supercom-
pilation notion of contraction. Sections from 3 to 5 present the definition of the
specialization relation: in Section 3 the specifics of our definition of the language
semantics and specialization is explained; in Section 4 the semantics and driving
of the language primitives and in Section 5 the semantics and specialization of
control program terms are specified. In Section 6 the most interesting properties
of the specialization relation are formulated and discussed, and in Section 7 we
conclude.

2 Basic Notions

2.1 Object Language and Semantic Domains

Figure 1 contains the definition of the abstract syntax of the object language
together with semantic domains for interpretation and specialization. It is a
simple first-order functional language. It has conventional control constructs if-
then-else, let-in, call, adjusted a bit to make the specialization inference rules
simpler. Figure 2 shows an example of a program and an initial configuration
for specialization.
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rev v1 = loop v1 []
loop [] v2 = v2

loop (v4 : v5) v2 = loop v5 (v4 : v2)

— a program
in Haskell

p = { rev 7→ call loop {v1 7→ v1, v2 7→ Nil},
loop 7→ let v3 = cons? v1 in

if v3

then let v4 = fst v1 in
let v5 = snd v1 in
call loop {v1 7→ v5, v2 7→ Cons v4 v2}

else v2

— the same
program in
the object
language

}

s0 = call rev {v1 7→ Cons A (Cons u1 (Cons B u2))} — an initial term

z |∆ = l0 | {l0 7→ s0} — an initial
configuration

Fig. 2. An example of a program p and an initial configuration

Data. A data domain Data is a constructor-based domain recursively defined
from a set of atoms Atom by applying a binary constructor Cons. The set Atom
contains at least True, False, and Nil.

Any constructor-based domain has the nice property that it can be easily
extended to meta-data without the need for encoding. In particular, a constant
in program code coincides with the value it represents. That is, Data ⊂ Term ,
where Term is the domain of program terms.

Configuration Data. Another extension of Data originates from the need to
constructively represent sets of data values and sets of program states. The ba-
sic method to represent sets is to embed free variables into the representation of
data. In the theory of supercompilation such variables are referred to as configu-
ration variables. The general principle is that a configuration variable, u ∈ Var ,
can occur in any position where a ground value is allowed.

A characteristic feature of supercompilation, which is preserved in our spe-
cialization relation definition, is that configuration variables become residual
program variables.

To specify polygenetic specialization, we use a representation of configura-
tions in form of directed acyclic graphs [12,13], which we define in the next
section and refer to as polygenetic configurations or polyconfigurations for short.
It requires one more extension of the data domain by so called liaison1 variables,
l ∈ LVar , bound variables that link positions in terms to subterms.
1 The term is due to V.Turchin, who suggested the use of such a representation of

configurations in supercompilers in 1970s.
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The data and configuration data domains, Data and CData, and the Term
domain are embedded in each other: Data ⊂ CData ⊂ Term .

Primitives. Data values are analyzed by primitive predicates equ? v a (are
two values equal?) and cons? v (is the value of a variable v a term of the form
Cons z1 z2 ?), which return atoms True or False, and selectors fst v and snd v ,
which require the value of v to be a Cons term and return its first and second
argument respectively.

To avoid dealing with exceptions, we impose a context restriction on selectors
fst v and snd v : they can occur only on the positive branch of an if-term with
the conditional cons? v .

Control. Control terms if-then-else and let-in are the usual conditional term
and let binding respectively. The following restriction is imposed for the sim-
plicity of the specialization definition: the conditional must be a variable v that
is bound to a conditional primitive, equ? or cons?, by an enclosing let term,
e.g.

let v = cons? v1 in . . . if v then s1 else s2 . . .

A program is a finite mapping of function names to program terms.
A function call, which usually looks like f(a1, . . . , an), is written in our

language as
call f {v1 7→ a1, . . . , vn 7→ an}

where v1, . . . , vn are the free variable names of the term that the name f is
bound to in the program.

For simplicity, terms are in the so called administrative normal form, that
is, the arguments of all terms except the let-in term and the then and else
branches of the if term, has trivial form: v ∈ Var or a ∈ Arg .

Notation.

– FVars(t) denotes the set of free variables occurring in term t .
– LVars(t) denotes the set of liaison variables in a term or in a configuration.
– Dom(m) and Rng(m) denote the domain and range of mapping m respec-

tively.

2.2 Configuration

While an interpreter runs a program on a ground data, a specializer runs a source
program on a set of data. A representation of a program state in interpretation
and that of a set of states in specialization is referred to as a configuration. We
follow the general rule of construction of the notion of the configuration in a
supercompiler from that of the program state in an interpreter that reads as
follows: add configuration variables to the data domain, and allow the variables
to occur anywhere where an ordinary ground value can occur. A configuration
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represents the set that is obtained by replacing all configuration variables with
all possible values.

There are two kinds of configurations, which we refer to as monogenetic con-
figurations and polygenetic configurations, or monoconfigurations and polycon-
figurations for short. In our previous work [8] monoconfigurations were actual
configurations. In this work monoconfigurations are used as configurations in
the rules for primitives, and polyconfigurations are configurations in the rules
for control terms. Polyconfigurations comprise monoconfigurations.

Syntactically, a monoconfiguration is a source program term, in which pro-
gram variables are replaced with their values.2

A polyconfigurations is a representation of a program state as directed acyclic
graphs (as in [12,13]). A polyconfiguration can be thought of as obtained from
a monoconfiguration in these steps:

1) decompose a monoconfiguration into a topmost term and some subterms;
2) bind the subterms to fresh liaison variables;
3) put the liaison variables into the topmost term instead of respective sub-

terms;
4) decompose some subterms analogously.

A polyconfiguration is denoted by z |∆, where z is the topmost subterm, and
∆ the binding of liaison variables to terms (monoconfigurations), referred to as
an explication.3 Topmost terms are restricted to z ∈ CData , that is, primitives
and control terms must be picked out (explicated) and put into the binding. As
an example, see the initial configuration in Fig. 2:

z |∆ = l0 | {l0 7→ call rev {v1 7→ Cons A (. . .)}}.

While initial configurations are usually trees, during specialization polycon-
figurations form directed acyclic graphs in general. In the case of the applicative
evaluation order, the polyconfiguration is a call stack. However, the inference
rules do not fix the order of evaluation, and we consider the explication as an un-
ordered set of bindings. Each time we write {l 7→ s}∆, we imply ∆1{l 7→ s}∆2

for some ∆1 and ∆2 such that ∆ = ∆1 ∆2 .
When it is clear from the context what kind of configuration is meant, we say

just a configuration. It is a monogenetic configuration when the rules of driving
of primitives are considered, and a polygenetic configuration in other cases.

2.3 Substitution

To avoid the ambiguity of traditional postfix notation for substitution tθ when
it is used in inference rules (either juxtaposition, or application of substitution),
we lift up the substitution symbol θ and use a kind of power notation tθ .
2 An alternative is to keep program terms untouched and to represent the monocon-

figuration as a pair consisting of a program term and an environment that binds
program variables to their values. Although this representation is more common in
implementations of interpreters and specializers, we prefer to substitute the environ-
ment into the term for conciseness of inference rules.

3 The term is due to V.Turchin.
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− : FName × Prog → Term

f{..., f 7→s, ...} = s

− : Term× (Contr ∪Args ∪ Expl) → Term

zθ = z if z ∈ Atom ∪Var ∪ LVar and z 6∈ Dom(θ)

v{..., v 7→z, ...} = z

Cons a1 a2

θ
= Cons aθ

1 aθ
2

fst v
θ

= fst vθ

snd v
θ

= snd vθ

cons? v
θ

= cons? vθ

equ? v a
θ

= equ? vθ aθ

if v then s1 else s2

θ
= if vθ then sθ

1 else sθ
2

let v = s1 in s2

θ
= let v = sθ

1 in sθ
2

call f b
θ

= call f bθ

− : Args × (Contr ∪Args ∪ Expl) → Args

{v1 7→ a1, . . . , vn 7→ an}θ = {v1 7→ aθ
1, . . . , vn 7→ aθ

n}

− : Expl × (Contr ∪ Expl) → Expl

{l1 7→ s1, . . . , ln 7→ sn}θ = {l1 7→ sθ
1, . . . , ln 7→ sθ

n}

− : PConf × (Contr ∪ Expl) → PConf

z |∆
θ

= zθ |∆θ

Fig. 3. The definition of substitution tθ for those domains which it is applied to
in the specialization relation definition

Thus tθ denotes the replacement of all occurrences of variables v ∈ Dom(θ)
in t with their values from a binding θ . Notation tηθ means sequential appli-
cation of substitutions η and θ to t in that order. When the argument of a

substitution is unclear, it is over-lined, e.g. a b c
θ
d .

The bindings listed in Fig. 1 are used as substitutions as follows:

– fp gets the term bound to a function name f in a program p ;
– fpb builds a monoconfiguration from a program term f b and the argument

binding b from a monoconfiguration call f b ;
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– z |∆
{l 7→z′}

substitutes a value z′ for a liaison variable l in a polyconfigura-
tion z |∆;

– sc and z |∆
c
contracts a monoconfiguration s and a polyconfiguration z |∆

respectively by replacing a configuration variable u with the configuration
value z′ bound to u by a contraction c = {u 7→ z′} .

See Fig. 3 for the formal definition of the substitution operation.

2.4 Contraction

After evaluation of a conditional, the current configuration divides into two sub-
configurations, the initial configurations of the positive and negative branches.
In our definition the subconfigurations represent the subsets precisely, that is,
they are disjoint.

There are two Boolean primitives, equ? v a and cons? v , in the object lan-
guage. After substitution of configuration values into the arguments of the prim-
itives, they ultimately reduce (by rules in Fig. 7 below) to the following checks
on configuration variables that produce branching in residual code: equ? u k ,
equ? u u′ , and cons? u , where k is an atom, u and u′ configuration variables.

For each of the primitives, the set of the values of a configuration variable
u that go to the positive branch can be represented by a substitution {u 7→ k} ,
{u 7→ u′} , or {u 7→ Cons u1 u2} , where k ∈ Atom , u1 and u2 are new con-
figuration variables. Such a substitution is referred to as a contraction. Being
applied to a configuration, it produces a configuration representing a subset of
the original one.

For uniformity’s sake, the opposite case of “negative” information—the set
of the values that go to the negative branch—is represented by a substitution as
well. To achieve this, we assume the representation of a configuration variable
contains a negative set : a set of “negative entities” the variable must be unequal
to. The negative entities are atoms, configuration variables, and the word Cons,
which represents inequality to all terms of the form Cons z1 z2 .

We denote the operation to add an entity n to the negative set of a config-
uration variable u by u−n . Thus the following substitutions are negative con-
tractions: {u 7→ u−k} , {u 7→ u−u′} , and {u 7→ u−Cons} .

2.5 Definition of Relations by Inference Rules

In the next sections the input-output interpretation and specialization relations
are defined in the style of Natural Semantics.

The relations are formalized by judgments listed and commented in Fig. 4.
A relation holds for some terms if the corresponding judgment is deducible.

The axioms, from which, and the inference rules, by which the judgments are
deduced, are presented in Figs. 5–11.

When we say just “deducible”, it means “deducible from all axioms and by
all inference rules presented in this paper”. When only part of axioms or rules
is used (e.g. for defining interpretation), it is mentioned explicitly.
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d ; z Interpretation and transient driving of a primitive d pro-
duces a value z. (The term d is a monoconfiguration.)

d ≺ T (c1, c2) Driving with branching: Driving of a primitive d produces
a branching represented by a residual conditional term T ( , )
with two free positions for positive and negative branches. In
the right-hand side T (c1, c2) these positions are occupied by
contractions c1 and c2. The contractions being substituted to
the configuration before the branching produce the initial con-
figurations for the positive and negative branches respectively.

p : s ⇒ q : r Specialization: A residual program q with an initial term r
is a specialization of a source program p with an initial term
s. (The term s is a monoconfiguration. The initial polyconfig-
uration is l | {l 7→ s}.)

p : z |∆ m : r Specialization to a term: A residual term r is a specializa-
tion of a source program p with an initial polyconfiguration
z |∆ with respect to a mapping m of residual function names
to polyconfigurations.

p : z |∆ ∅ : z′ Interpretation as a subset of specialization: In the case
where the residual program is empty, and hence m = ∅, and
the residual term z′ is a configuration value, z′ ∈ CData, the
previous judgment means interpretation or transient driving.

p : s → z Interpretation as a subset of specialization: This is a
shortcut notation for the particular case of the above judgment
of the form p : l | {l 7→ s} ∅ : z.

p : s
◦→ z Interpretation (semantics): This judgement is equivalent to

p : s → z with the requirement that it be deduced using only
the interpretation and transient driving rules marked with ◦.
This is proper interpretation when FVars(s) = ∅ and hence z
is a ground value, z ∈ Data.

Fig. 4. Judgments

3 Interpretation as a Subset of Specialization

A specialization relation is an extension of the semantics of a language, which
is usually a function (for deterministic languages). We could give the language
semantics, develop separately the specialization relation, and then prove the
statement that the specialization relation includes the semantics.

However, to save space and mental effort we follow another line. We define the
specialization relation by inference rules in such a way that a subset of the rules
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tr-drv
p : l | {l 7→ s}  ∅ : z

p : s → z
z ∈ CData

int
p : s → z

p : s
◦→ z

if inferred with ◦-rules only
z ∈ CData

Fig. 5. Transient driving and interpretation as a subset of specialization

defines the semantics, interpretation. The interpretation rules have labels marked
with ◦ . The rules with unmarked labels extend interpretation to specialization.

The specialization judgments p : s ⇒ q : r and p : z |∆ m : r contain a
residual program q and an auxiliary mapping m (explained in Section 5.1 be-
low), which has the same domain, Dom(q) = Dom(m) ⊂ FName , the set of
residual function names. When there are no residual functions, that is, p = q = ∅ ,
the residual code is merely a tree represented by the term r that cannot contain
call terms. The particular case where the residual term r is a value virtually
defines the semantics of the language. It can be proven that judgments of this
form are deducible by means of the interpretation rules only.

We define a shortcut notation p : s → z for this case by rule tr-drv, and
denote by a circle over the arrow the fact that it is inferred by the interpretation
rules only: p : s

◦→ z (see rule int in Fig. 5).
The interpretation rules also define transient driving, which is the basic case

of driving where the configuration and liaison variables do not prevent a special-
izer from unambiguously performing a step. The case of proper interpretation
can be distinguished from the case of transient driving by the restriction that
the initial configuration does not contain configuration variables, FVars(s) = ∅ .

Definition 1 (Interpretation, semantics). A source program p with an ini-
tial term s (in which arguments have been substituted) without configuration
variables, FVars(s) = ∅ , evaluates to a term x ∈ Data if the following judgment
is deducible:

p : s
◦→ x

4 Interpretation and Specialization of Primitives

4.1 Interpretation and Transient Driving of Primitives

A judgment of the form d ; z means interpretation or transient driving of a
primitive monoconfiguration d (i.e., a source program primitive term, in which
program variables have been replaced with their values) produces a value z .

In the rules we distinguish between the case where configuration values can
occur and the case where only ground values occur by the names of free variables:
k ∈ Atom ⊂ Data , x ∈ Data , z ∈ CData , that is, k and x range over ground
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i-value◦ z ; z z ∈ CData

i-fst◦ fst (Cons z1 z2) ; z1

i-snd◦ snd (Cons z1 z2) ; z2

i-cons-t◦ cons? (Cons z1 z2) ; True

i-cons-f◦ cons? k ; False k ∈ Atom

i-eq-t◦ equ? z z ; True

i-eq-f◦ equ? x1 x2 ; False
x1 6= x2

x1, x2 ∈ Data

d-eq-ck equ? (Cons z1 z2) k ; False k ∈ Atom

d-eq-cc
equ? z1i z2i ; False

equ? (Cons z11 z12) (Cons z21 z22) ; False
i ∈ {1, 2}

Fig. 6. Interpretation and transient driving of primitives

values and z ranges over configuration values that may contain configuration
and liaison variables. Note that only rules i-cons-f◦ and i-eq-f◦ , which defines
inequality, require values to be ground.

The last two rules in Fig. 6, d-eq-ck and d-eq-cc, and the rules in Fig. 7
that infer judgments of the form d ; z define the cases of transient driving that
are not covered by the interpretation rules.

The rules in Fig. 7 mean:

– d-cons-f and d-eq-ucf — returning False in the case where a configuration
variable u contains in its negative set the symbol Cons and hence is unequal
to any Cons term;

– d-eq-com — commutativity of equ?;
– d-eq-ukf — returning False in the case where a configuration variable u

contains in its negative set the atom k it is compared to;
– d-eq-uuf — returning False in the case where a configuration variable u1

contains in its negative set the configuration variable u2 it is compared to.
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4.2 Driving with Branching

A judgment of the form d ≺ T (c1, c2) means driving4 of a primitive monocon-
figuration d produces a branching in residual code represented by a conditional
term T ( , ) with two free positions for positive and negative branches and two
contractions c1 and c2 . The contractions c1 and c2 , being applied as substi-
tutions to the configuration d , divide it into two subconfigurations, which are
initial configurations for positive and negative branches respectively.

For the sake of notation brevity, the contractions c1 and c2 occupy in T ( , )
the positions where the residual terms for the positive and negative branches will
occur in the final residual code.

Figure 7 contains the rules that infer branching in residual code for the source
primitives cons? and equ?. The branching happens when a configuration vari-
able u (or two variables u1 and u2 in the case of the equ? term) prohibits from
performing an evaluation step. Notice the branching rules perform no evaluation
step of the source program, but just produce a residual if term and contractions.
The proper evaluation step is performed by transient driving rules for the same
primitive after contractions c1 and c2 has been substituted into the current con-
figuration by rule ps-branch, which produces initial configurations for branches,
and transient driving of the primitive has been “invoked” by rule ps-prim◦ in
Fig. 9.

The correctness of this deduction is based on the perfectness [3] of contrac-
tions c1 and c2 and on the fact that after substitution of ci into d some transient
driving rule for the judgment dci ; z is applicable.

In each of the three use cases of the term T ( , ) in Fig. 7 it meets the
following property: the value of T (x1, x2) is either x1 for the configuration
obtained by contraction c1 , or x2 for the configuration obtained by contraction
c2 . The correctness of rule ps-branch relies on this property.

In Fig. 7, the rules of driving of equ? and cons? terms that infer judgments
of the form d ≺ T (c1, c2) mean:

– Rule d-cons defines the branching in a residual program that corresponds
to a monoconfiguration of the form cons? u . The right-hand side consists of
the residual if term that tests the value of the variable u , the assignments of
the parts of the u value to fresh variables u1 and u2 on the positive branch,
and two complementary contractions {u 7→ Cons u1 u2} and {u 7→ u−Cons}
occupying in the term T ( , ) the positions of the positive and negative
branches respectively.

– Rules d-eq-uk and d-eq-uu analogously define the branchings correspond-
ing to monoconfigurations equ? u k and equ? u1 u2 in the case where there
is no information in negative sets of configuration variables about the equal-
ities under the respective tests.

4 What is usually called driving in the theory of supercompilation is unfolding an
infinite process tree [17,3,1]. This sense could be captured by the ◦ -rules together
with rule ps-branch if we consider infinite residual terms r . However, it would be
another theory.
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d-cons-f cons? u ; False
u = u−Cons

u ∈ Var

d-cons cons? u ≺ let u0 = cons? u in
if u0

then let u1 = fst u in
let u2 = snd u in
{u 7→ Cons u1 u2}

else {u 7→ u−Cons}

u 6= u−Cons

u0, u1, u2 new
u, ui ∈ Var

d-eq-com
equ? u z ; T
equ? z u ; T

u ∈ Var

d-eq-ukf equ? u k ; False
u = u−k

u ∈ Var
k ∈ Atom

d-eq-uk equ? u k ≺ let u0 = equ? u k in
if u0

then {u 7→ k}
else {u 7→ u−k}

u 6= u−k

u0 new
u, u0 ∈ Var
k ∈ Atom

d-eq-uuf equ? u1 u2 ; False
u1 = u−u2

1

u ∈ Var

d-eq-uu equ? u1 u2 ≺ let u0 = equ? u1 u2 in
if u0

then {u1 7→ u2}
else {u1 7→ u−u2

1 , u2 7→ u−u1
2 }

u1 6= u−u2
1

u0 new
ui ∈ Var

d-eq-ucf equ? u (Cons z1 z2) ; False

u = u−Cons

u ∈ Var
or u ∈ FVars(z1)
or u ∈ FVars(z2)

d-eq-uc
cons? u ≺ T

equ? u (Cons z1 z2) ≺ T

u 6= u−Cons

u ∈ Var
u 6∈ FVars(z1)
u 6∈ FVars(z2)

Fig. 7. Driving of primitives
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– Rule d-eq-uc reduces the test of equality of a variable u and a Cons term,
equ? u (Cons z1 z2), to the test of whether u is a Cons term or not, cons? u .
Recall the judgment d ≺ T (c1, c2) defines no evaluation step, only a branch-
ing. So, the rule reads as follows: to advance driving of the configuration
equ? u (Cons z1 z2) residualize the same branching as for the configuration
cons? u . After that, the evaluation step will be performed by the driving
rules for the equ? term.

5 Interpretation and Specialization of Control Terms

A judgment of the form p : z |∆ m : r inferred by the rules in Fig. 9 asserts
that a residual term r is a specialization of a source program p with an initial
polyconfiguration z |∆ with respect to a mapping m of residual function names
to polyconfigurations.

5.1 Correspondence between Residual Functions and Configurations

The mapping m : Dom(q) → PConf assigns meaning to the residual call terms
occurring in r . This can be explained in terms of the language semantics as
follows. For all values of the configuration variables of the configuration z |∆
and the residual term r ,5 evaluation of the configuration z |∆ with the source
program p gives the same result as evaluation of the term r in the following two
steps:

1) for each subterm of the form call fi bi occurring in r , evaluate the config-

uration fmbi
i = zi |∆i

bi

with the source program p , where zi | ∆i is the
configuration bound to the function name fi by the mapping m ;

2) evaluate the term r using the thus obtained values of the call terms.

In other words, each residual function body in q is equivalent to the corre-
sponding configuration in m . In its turn, the equivalence can be stated by the
specialization relation.

Notice the sense of the mapping m is inherently recursive: on the one hand,
m is used in the definition of the specialization relation; on the other hand,
its sense is based on the semantics of the language, which is a subset of the
specialization relation.

To escape from the vicious circle, we define a relation between m and source
and residual programs p , q . We refer to it as consistency of m with p and q .

Definition 2 (Consistency). A mapping m : Dom(q) → PConf of residual
function names to configurations is consistent with source and residual pro-
grams p and q if for every residual function name f ∈ Dom(q) the following
judgment is deducible:

p : fm  m : fq

provided the judgment is not inferred immediately from axiom ps-gen.
5 Note FVars(z |∆) = FVars(r) .



68 Andrei V. Klimov

spec
p : l | {l 7→ s}  m : r

p : s ⇒ q : r
if m is consistent with p and q

Fig. 8. Specialization relation

The equivalence of configurations and residual terms represented by the map-
ping m is virtually an inductive hypotheses, the deduction of the judgments in
the definition being an induction step. When proving by induction, care must
be taken to avoid premature use of the inductive hypothesis. This is the role of
the provision in the definition. Otherwise, the residual program may contain a
loop that is absent in the source program, and the residual program may not
terminate when the source program terminates.

5.2 Specialization Relation

Now we are ready to define the specialization relation, a relation between pairs
consisting of a program and an initial term. We denote the pairs by p : s and q : r
for a source program pair and a residual program pair respectively, p, q ∈ Prog ,
s, r ∈ CData . Only such terms s and r that have the same configuration vari-
ables can relate by the specialization relation, FVars(s) = FVars(r).

For the sake of uniformity of input and output, we consider the specialization
relation over plain terms (monoconfigurations) rather polygenetic configurations.
An initial term s corresponds to the initial polyconfiguration l | {l 7→ s} .

Definition 3 (Specialization). A pair q : r of a residual program q and an
initial term r is a specialization of a pair p : s of a source program p and
an initial term s if there exist a mapping m of residual function names to
configurations, consistent with p and q , such that the following judgment is
deducible:

p : l | {l 7→ s} m : r.

We denote the fact that pairs p : s and q : r satisfy the specialization relation
by judgment p : s ⇒ q : r . Formally it is defined by rule spec in Fig. 8.

5.3 Rules for Control Terms

Figure 9 contains the main part of the specialization relation definition for the
control terms.

Interpretation of Control Terms. Axiom ps-base◦ asserts the evident fact
that a constructor term z ∈ CData is equivalent to itself considered as either a
configuration, or a residual term.
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ps-base◦ p : z | {}  m : z z ∈ CData

ps-prim◦

d ; z′

p : z |∆
{l7→z′}
 m : r

p : z | {l 7→ d}∆  m : r

d ∈ Prim
z′ ∈ CData

ps-branch

d ≺ T (c1, c2)

p : z | {l 7→ d}∆
c1
 m : r1

p : z | {l 7→ d}∆
c2
 m : r2

p : z | {l 7→ d}∆  m : T (r1, r2)

FVars(d) ⊆ Dom(ρ)
d ∈ Prim

ps-if-t◦
p : z | {l 7→ s1}∆  m : r

p : z | {l 7→ if True then s1 else s2}∆  m : r

ps-if-f◦
p : z | {l 7→ s2}∆  m : r

p : z | {l 7→ if False then s1 else s2}∆  m : r

ps-let◦
p : z | {l′ 7→ s1, l 7→ s

{v 7→l′}
2 }∆  m : r

p : z | {l 7→ let v = s1 in s2}∆  m : r

l′ new
l′ ∈ LVar

ps-call◦
p : z | {l 7→ fpb}∆  m : r

p : z | {l 7→ call f b}∆  m : r

FVars(fp) ⊆ Dom(b)
f ∈ Dom(p)
f ∈ FName

b ∈ Var → Arg

ps-gen p : fmb  m : call f b

FVars(fm) ⊆ Dom(b)
f ∈ Dom(m)
f ∈ FName

b ∈ Var → Arg

Fig. 9. Polygenetic specialization
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Rule ps-prim◦ describes the case where a monoconfiguration d taken from a
polyconfiguration z | {l 7→ d}∆ can be evaluated to a value z′ , that is, d ; z′ .

Rules ps-if-t◦ and ps-if-f◦ define the semantics of the if term.
Rule ps-let◦ defines the let term by decomposing it into two parts and

reducing to a configuration where the parts s1 and s2 are bound to separate
liaison variables l′ and l respectively.

Rule ps-call◦ defines the term call f b by picking up the body fp of a
function f from a program p and applying the argument substitution to it.

Other rules specify specialization proper.

Residualization of Conditional Term. Rule ps-branch uses the result of
driving of a Boolean primitive to build a branching in residual code. It was
commented in Section 4.2 above.

Notice the case where a value of a conditional a is a configuration variable,
is absent. It is useless due to the syntactic restriction on the term a (see Sec-
tion 2.1).

Generalization. The most interesting rule is axiom ps-gen that defines the
notion of generalization of a configuration together with folding into a residual
call term.

Reading the judgment

p : fmb  m : call f b

from left to right in terms of production of residual code rather than its specifica-
tion, we say that some configuration fmb = z |∆ is generalized to configuration

fm = z′ |∆′ with the substitution b such that z |∆ = z′ |∆′
b
. The term call f b

is residualized, where the function f has such a body r = fq that satisfies the
specialization relation

p : z′ |∆′  m : r

which is implied by the consistency requirement to the mapping m of residual
function names to configurations.

Splitting a Configuration. The definition of polygenetic specialization is in-
complete without a rule that allows for composition of configurations if inference
rules are read forwards, or splitting a configuration into two ones if inference rules
are read backwards. Such rule ps-split is presented in Fig. 10.

Rules ps-gen and ps-split are the only rules that do not allow for un-
ambiguously constructing the specialization algorithm from the inference rules.
They reveal the place in construction of supercompilers where decision-taking
strategies when and how to generalize and when and how to split configurations
are to be developed. This is the most sophisticated part of supercompilers. The
quality of residual programs depends mainly on them, while the correctness is
guaranteed by the mere fact the result matches these inference rules.
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ps-split

p : z |∆1

{l7→u}
 m : r1

p : l | {l 7→ s}∆2  m : r2

p : z |∆1 {l 7→ s}∆2  m : let u = r2 in r1

V1 ∩ V2 = {l}
u new
u ∈ Var

where V1 = LVars(z |∆1)
V2 = LVars({l 7→ s}∆2)

Fig. 10. Splitting a Configuration

ps-collapse
p : z | {l 7→ s}∆

{l′ 7→l}
 m : r

p : z | {l 7→ s, l′ 7→ s}∆  m : r

ps-nonstrict◦
p : z |∆  m : r

p : z | {l 7→ s}∆  m : r

l 6∈ LVars(z |∆)
l ∈ LVar

Fig. 11. Extensions of interpretation and specialization

5.4 Extensions

The specialization relation can be infinitely extended by adding more and more
rules that describe additional equivalences between source and residual pro-
grams. Figure 11 demonstrates two of them.

The first extension is collapsed-jungle driving [12,13] defined by rule ps-
collapse. It avoids multiple evaluation of equal terms by deleting one of two li-
aison variable bindings of the form {l 7→ s, l′ 7→ s} and replacing all occurrences
of the deleted variable l′ by the variable l . The classic example of application
of this rule is transformation of the naive recursive definition of the Fibonacci
function with exponential complexity to the definition with linear complexity.

The second rule ps-nonstrict◦ extends the relation to non-strict semantics,
which means the possibility of evaluation of a function call without evaluation
of its arguments. The specialization rules allow for arbitrary order of evaluation.
All of the other rules preserve unevaluated terms even if their results are un-
needed. With rule ps-nonstrict◦ , which removes a binding of an unused liaison
variable, the relation allows for both non-strict semantics and lazy evaluation in
an interpreter as well as in a specializer.

Notice rule ps-collapse is considered a specialization relation rule (having
no ◦ mark), while ps-nonstrict◦ is marked with ◦ as an interpretation rule.
The reason for the difference is that the former rule does not change the language
denotational semantics, while the latter does. The collapsed-jungle driving allows
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Idempotency Transitivity Preservation of semantics
by specialization

p : s ⇒ q : r

q : r ⇒ q : r

p : s ⇒ q : r
q : rc ⇒ q′ : r′

p : sc ⇒ q′ : r′
(p : s

◦→ x) ⇔ (p : s → x)

Completeness Soundness Correctness

p : s ⇒ q : r
p : sc → x

q : rc → x

p : s ⇒ q : r
q : rc → x

p : sc → x

p : s ⇒ q : r

(p : sc ◦→ x) ⇔ (q : rc ◦→ x)

Fig. 12. Properties of the specialization relation

for merely achieving additional speed-up by specialization, while the non-strict
extension changes the termination behavior of a program.

If rule ps-nonstrict◦ were applied only to specialization then a residual
program might have a larger domain than the source program. This is often the
case of practical supercompilers for strict languages (e.g. for Refal [9]), since su-
percompilers use lazy evaluation for achieving better results. This is the reason
for the widespread myth that supercompilation in essence violates the termi-
nation behavior. However, if both source and residual programs as well as a
specializer use the same semantics—either strict, or non-strict—the semantics is
preserved (provided some other rules do not violate it).

6 Properties of Specialization Relation

As it is common in mathematics, relations obey more interesting properties
than functions. In Fig. 12 the most important properties of the specialization
relation are summed up. For readability, the statements are written out in form
of inference rules. Their validity can be proven from the specialization rules.

The properties are rather natural for such a relation. Some of the prop-
erties are mandatory: preservation of semantics, soundness, completeness, and
their corollary—correctness. Others—idempotency and transitivity—are addi-
tional nice properties that allow for simpler and more natural reasoning about
specialization in form of a relation.

6.1 Idempotency

Intuitively, we consider returning an unchanged program to be a trivial case of
specialization. One may expect that p : s ⇒ p : s is true, that is, the special-
ization relation is reflexive. However, our rules require some specialization of
function bodies always be performed, and hence many programs cannot occur
in the right-hand sides of deducible judgments. In principle, it is easy to add
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several rules that would allow for “doing nothing”, but we prefer the present
version, which guide us in construction of non-trivial specializers. Nevertheless,
any residual program is allowed to be its own specialization by our relation. Such
property is referred to as idempotency.

Proposition 1 (Idempotency). For all p , s , q , r such that

p : s ⇒ q : r

the following judgment is deducible:

q : r ⇒ q : r

6.2 Transitivity

Specialization can be performed stepwise: specialization of a source program
p : s with respect to a part of arguments (let them be already substituted into
s) followed by specialization of the residual program q : r with respect to a part
of the rest arguments (let them be represented by a substitution c) produces the
second residual program q′ : r′ , which may be expected to be a specialization of
the source program with respect to all information known so far. This property
(referred to as transitivity) is not generally true when specializer functions are
concerned, but it may hold for a specialization relation. This is indeed our case.

Proposition 2 (Transitivity). For all p , s , c , q , r , q′ , r′ such that

p : s ⇒ q : r
q : rc ⇒ q′ : r′

the following judgment is deducible:

p : sc ⇒ q′ : r′

6.3 Soundness

Consider the special case of transitivity where the second specialization is inter-
pretation, that is, the residual program is empty, q′ = ∅ , and the residual term x
is a configuration value, x ∈ CData . In this case transitivity means: if a residual
program q : r when run with arguments given by a contraction c produces some
result x , the source program p : s run with the same arguments also terminates
and gives the same result. This property is soundness of specialization.

Proposition 3 (Soundness). For all p , s , c , q , r , x such that

p : s ⇒ q : r
q : rc → x

the following judgment is deducible:

p : sc → x

Soundness is an immediate corollary of transitivity and a necessary condition
for correctness.
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6.4 Completeness

The converse property to soundness is completeness: if a source program p : s
when run with arguments c produces some result x , a residual program q : r
run with the same arguments also terminates and gives the same result.

Proposition 4 (Completeness). For all p , s , q , r , c , x such that

p : s ⇒ q : r
p : sc → x

the following judgment is deducible:

q : rc → x

Completeness is one more necessary condition for correctness.

6.5 Preservation of Semantics

Recall we use a subset of the specialization rules as the definition of the language
semantics. Hence, the fact that specialization includes interpretation is trivial.
However, we must ensure that the specialization rules do not occasionally extend
the semantics. Formally speaking, the following proposition must hold and it
holds for our specialization relation indeed.

Proposition 5 (Preservation of semantics). For all p , s , x such that

p : s → x

the following judgment is deducible:

p : s
◦→ x

6.6 Correctness

Since the semantics of the object language is represented by a part of the infer-
ence rules, the correctness of the specialization relation is its internal property
that can be expressed as follows.

Proposition 6 (Correctness). For all p , s , q , r such that

p : s ⇒ q : r

it holds that for all c and x the following judgments are deducible or not de-
ducible simultaneously:

p : sc ◦→ x

q : rc ◦→ x

The last two judgments mean interpretation of source and residual programs
p : s and q : r with values supplied by a contraction c produces equal results x .

The correctness is an immediate corollary of soundness, completeness and
preservation of semantics.
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7 Conclusion and Related Work

This paper presents a formal specification of a class of specializers by inference
rules in the style of Natural Semantics [6]. The rules define a relation between
source and residual programs, which partial evaluation and supercompilation
obey. The proposed intensional relation lies between algorithmic definitions of
specializers and the extensional equivalence of programs.

The specialization relation definition declaratively captures the essential no-
tions of supercompilation: configuration, driving, generalization of a configura-
tion, splitting a configuration, as well as advanced notions like collapsed-jungle
driving and variations of strictness and laziness of semantics, while abstracting
from algorithmic problems of when, what and how to generalize and split, and
when to terminate. It provides a basis for correctness proofs of supercompilers
and for construction of an alternative proof of the correctness of partial evalu-
ators [4,2]. To prove the correctness of a particular specializer we just need to
prove that its inputs and outputs satisfy the specialization relation. By nature of
Natural Semantics, the definition in form of inference rules allows for automated
derivation of specializers that satisfy it as well as checkers of the correctness of
residual programs.

An earlier version of specialization relation definition was presented at the
Dagstuhl Seminar on Partial Evaluation, where only abstract [7] was published.
It continues the work started in [3] and aimed at clarifying and formalizing the
ideas of supercompilation. This paper gives a generalization of the definition
presented in [8] from monogenetic to polygenetic case.

In Turchin’s original papers [16,17] and others, the essential ideas of super-
compilation and technical details of algorithms were not separated enough to
give their short formal definition. Later on, several works have been done to
fill this gap, e.g. [3,13,14,15]. All of them formalize the function of the super-
compiler, while our work is, to our knowledge, the first attempt to define an
input-output relation, which specializers based on both supercompilation and
partial evaluation satisfy. The closest related work is [13,14] where the notion of
the graph of configurations is formalized by inference rules that deduce the arcs
of the graph.

The specialization relation obeys a number of nice properties: idempotency,
transitivity and its corollary soundness, completeness, correctness, and others.

Future work will include development of specialization relation definitions
for more sophisticated languages, including object-oriented ones, further investi-
gation into their properties, and construction of supercompilers that satisfy the
specialization relation and hence are provably correct.
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