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Abstract. An extension of Turchin’s supercompilation from functional
to object-oriented languages as it is implemented in the current ver-
sion of a Java supercompiler (JScp) is reviewed. There are two novelties:
first, the construction of the specialized code of operations on objects
is separated into two stages—residualization of all operations on objects
during supercompilation proper and elimination of redundant code in
post-processing; and second, limited configuration analysis, which pro-
cesses each Java control statement one by one using width-first unfolding
of a process graph, is used.
The construction of JScp is based on the principle of user control of the
process of supercompilation rather than building a black-box automatic
supercompiler. The rationale for this decision is discussed.
Keywords: specialization, supercompilation, object-oriented languages.

1 Introduction

Turchin’s supercompilation [15] and related metacomputation technologies—
partial evaluation, deforestation, mixed computation, etc.—for program special-
ization, fusion, slicing, inversion, etc., although being under development for
more than three decades, are still in a state of infancy from the practical view-
point. One may ask, why is it taking so long?

One evident reason is that time is always needed for a method to become
mature enough to be embedded in tools and systems and used by rank-and-file
programmers. However, from our viewpoint, there are essential reasons that have
not allowed things to go this way quickly.

Supercompilation belongs to a new kind of program transformation tech-
nology which oversteps the limits of black-box program optimization used in
widespread optimizing compilers. When a method is built in a subsystem that
is almost invisible from outside, users accept it and it is put into practice easily.
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To be “invisible”, a method must work quickly—preferably in linear time on
the size of code. The commercial compiler developers consider this requirement
essential. However, such limitation does not allow for unbounded evolution of
the intelligence of program transformers.

In the early years of supercompilation development there was a dream of
fully automatic supercompilers that could kind of “solve all problems” (note
this is similar to the dream and belief in strong artificial intelligence in the
same decades). But now, despite the evident progress in supercompilation and
other metacomputation methods, we should adopt another viewpoint, another
paradigm. Unbounded evolution is possible only in human-machine systems, the
human performing the role of a metasystem [14].

Often the human control is considered as an interim measure with the goal to
fully automate the control later and to commit it to the machine. It is indeed a
good approach. In particular, it simplifies the first steps of system development
by avoiding complex and possibly unsolvable problems in early stages. The only
difference we argue for is that full automation should not be the ultimate goal.
The goal must be careful division of labor between machine and human, putting
at the machine level what it can do better, and on the human level what he
can do better, and permanent movement of activities from human to machine,
preserving the (meta) role of the human.

Such an approach requires development of new specific human-machine in-
terfaces, and redevelopment of program transformation methods in such a way
that they are comprehensible and controllable by the user.

Based on these considerations, from the very beginning, the Java supercom-
piler (JScp) [4,6] has been developing as a user-controlled system rather than an
automatic supercompiler.

We have not yet constructed JScp as a convenient system for a user with an
appropriate graphical user interface (GUI). At the current stage, this principle
influenced the development in such a way that we were not afraid of introducing
options in all places of supercompilation algorithms where there are degrees
of freedom. Now the options are typed in a separate advice file which is an
additional input to JScp. It is not easy to use JScp now. This is the main reason
why we cannot suggest it to ordinary users. In future, a special GUI will have
to be developed. This work has been just initiated and it is too early to discuss
this topic in this paper in more detail.

Concluding the introductory part, I would like to share a strong impression
based on experiments with the Java supercompiler that from the beginning of
the Millennium we have practically no limitations from the hardware side for
performing research and experiments in the area of metacomputation. The situ-
ation is quite opposite to what we had in the previous decades. Now we see that
this was an objective reason for the slowness of the development of the meth-
ods. The few megabytes of memory that were not available in the 70s and were
enough in the mid to late 80s to achieve self-application of specializers based on
the method of partial evaluation [5,11], were totally insufficient to do what we
do now. On the other hand, the modern gigahertzes and gigabytes give us an
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impressive freedom of experimenting, and in the nearest future we will observe
the burst of results in our area.

2 Design Decisions of Java Supercompilation

2.1 User Control

As it was mentioned above, the Java supercompiler (JScp) has been developing
as a user-controlled system rather than an automatic supercompiler. Let us turn
to more tangible reasons for the decision:

– The project was initiated more than a decade ago, when research supercom-
pilers had not yet shown themselves to be practical tools, while our goal
was ambitious: to attack a practical language Java. There was not enough
confidence in the possibility of automatic supercompilation at all, since ex-
perimental supercompilers (first of all, the V.F. Turchin’s one [17,18]) were
still weak.

– The main foreseeable problem was, is, and will be, scalability of the methods
to large industrial code. Supercompilation as well as other relative methods
have exponential (and perhaps even more) complexity. The user control is an
effective (and perhaps, the only practicable) method to beat the exponential
complexity down.

– The JScp project was a venture into supercompilation of the new object-
oriented world, and a lot of experimenting to test and tune the methods was
required.

Since then A.P. Nemytykh continued and has completed the development of
the V.F. Turchin’s supercompiler for the functional language Refal [10] and its
practical usage has begun [9]. To a large extent, it may be considered as an
automatic supercompiler. It solves a reasonable class of problems in almost au-
tomatic mode.1 Nevertheless the mentioned uncertainties and risks remain, and
we continue considering user-controlled rather than black-box supercompilers
the high road of their development.

2.2 First Milestone

Construction of a supercompiler for such a cumbersome language as Java should
be a stepwise process. Our first goal was to find such a subset of the supercom-
pilation method “wheels” that is sufficient to implement the first supercompiler
that has practical sense, kind of first “milestone”. After it is achieved, we can
get feedback from experiments with realistic code, and start the development of

1 The combination of particular features implemented in it—negative information
propagation at the level of driving and combination of V.F. Turchin’s stack “whis-
tle” [16] and the “whistle” [13,17] based on Kruskal’s homeomorphism embedding
[8]—have proven themselves to be highly successful.
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convenient means to control the supercompiler by the user (which is a new area
of research). We consider the JScp project being just at this stage.

In general outline, the current version of JScp (downloadable from the project
site [6]) implements the following features:

– quite complete driving, which is, in particular, capable of rigorous specializa-
tion of operations on mutable objects. We observed that underdevelopments
in driving noticeably reduce the depth of specialization. Nevertheless, some
well-studied features of driving are not implemented yet: there is no nega-
tive information propagation and contractions after a test for equality are
performed only for primitive data (and this feature is switched off by de-
fault). We observed these features are not as important than plain positive
information propagation;

– limited configuration analysis. We gave up implementing the traditional con-
figuration analysis that traversed all processes by driving and performed the
operations on configurations to compare them, to loop-back, to generalize,
to split, and thus constructed the residual graph. The main reason for this
decision is that it is too monolithic: nearly a dozen of Java control state-
ments must be fused into the algorithm of unfolding and folding the graph
of configurations. For the first version of JScp we have made another decision
where each control statement is driven, analyzed and residualized separately.
This entailed the change from depth-first traversal of processes and configu-
rations to width-first : for each control statement, its graph of configurations
until the end of the statement is recursively built from the graphs of nested
statements. This allowed us to elaborate the subtleties of each control state-
ment one by one. Otherwise we did not manage the qualitative complexity
of Java notions in the first version of JScp.

Thus there are two main differences in the method of supercompilation of Java
implemented in the current version of JScp from the traditional supercompilation
of functional languages:

– driving of operations on mutable objects (discussed in more detail in the
next section). This is applicable to all object-oriented languages; and

– new method of configuration analysis of Java control statements by width-
first unfolding of the graph of configurations and recursive constriction of
residual code from the residual code of nested statements. (This is not fur-
ther discussed in this paper.) This method is applicable not only to object-
oriented languages, but to all imperative languages with a sophisticated set
of control statements.

3 Driving of Operations on Objects

The most notable distinction of supercompilation in JScp is driving of objects.
An important feature of functional languages which is not preserved in object-

oriented ones, and on which supercompilers and partial evaluators rely, is that
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values partially known at specialization time are easily residualized (“lifted”):
a representation of a value (possibly with configuration variables) in a configu-
ration can always be compiled into code producing the value at run-time, each
execution of the code or its copies producing equal values.

Objects do not possess this property. It is no problem to represent the result of
construction of an object as a result of driving of an instance creation expression
new C(arguments), where C is a class name, and to store it in the heap part of a
configuration. It is not a problem to perform all operations on the representation
of the object at supercompilation time. But it is impossible to generate the code
that reconstructs the object at run-time. One of the reasons is that this code
would generate different instances each time it is executed.

In “off-line” partial evaluators for object-oriented languages the preliminary
binding time analysis supplies each instance creation expression with an anno-
tation telling what to do: either to residualize the new expression, or not to
residualize it and instead possibly residualize some of its fields as local variables.
The necessity to take this decision in advance, when the values are completely
unknown, restricts the depth of specialization. The preliminary analysis gives
approximate information about the future of the objects.

3.1 Residualization of Operations on Objects

In “on-line” supercompilation, when driving meets an instance creation expres-
sion new C(...) it does not know whether the new object will be needed at
run-time, or only some information from its fields. Hence, it is forced to always
residualize it. The representation of the object is kept in configurations in order
to perform operations on it at supercompilation time. If all information about
the object is known then all operations will be performed by the supercompiler.
Simultaneously all operations are residualized (except reading known values or
configurations variables from fields) in order to create an object with the equiv-
alent state at run-time.

In such a way, correct residual code is built but it contains a lot of redundant
operations (see example in Fig. 3 below). Even local variables, which keep refer-
ences to unused objects, may be unneeded. Often objects can be transformed to
local variables that keep the values of part of fields needed at run-time.

Such transformation is performed in JScp by post-processing, which propa-
gates information backwards from the points of use of objects to the points of
their creation, from the future to the past.

3.2 Redundant Code Elimination by Post-processing

To eliminate redundant variables and code, the well-known methods from op-
timization compilers could be used. One might expect that an optimizing Java
compiler can do this work and there is no need to implement this feature in
JScp. However, all methods of redundant code elimination are approximate and
address specific kinds of redundancy. The mainstream optimizing compilers are
tuned for code written by humans or generated by preprocessors. It is unjustified
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to expect that they can find the redundant code produced by a supercompiler
and perform expected transformations such as conversion of objects to local
variables representing their fields.

Another reason why we have implemented a special-purpose post-processing
analysis for redundant code elimination in JScp is that it is important to produce
readable residual code—in particular, to support the user control that we argue
for. (Compare the code in Fig. 3 and Fig. 4.)

The current version of post-processing analysis in JScp is a first approxima-
tion. It can be improved in future versions, but perhaps at the expense of time
spent for analysis. The analysis is monovariant with respect to code, that is, all
operations on reference variables are considered as an unordered set. One deci-
sion is made for each residual instance creation expression: whether to residualize
it or not. If the instance is residualized, no fields are moved to local variables,
although this may be beneficial in some branches of code.

Our experiments with supercompilation of realistic code show that such ap-
proximate analysis and transformation behaves rather well. The majority of
redundant code is eliminated.

4 Example

Consider the famous A.P. Ershov’s example of program specialization of a power
function with respect to a known exponent. The only difference is that we use
complex numbers represented by objects of class Complex (Fig. 1) instead of real
numbers, in order to demonstrate how the two-stage residualization of objects
works.

The program to be supercompiled is shown in Fig. 2. It consists of a general
method toPower, which raises a complex number x to the power of an arbitrary
nonnegative integer n, and a special method toPower3, which invokes the method
toPower with n = 3.

The task for JScp is to supercompile method toPower3. In this case the JScp
command line looks as follows:

jscp ComplexPower.java Complex.java -m toPower3 -aggr -invoke

where
– arguments ComplexPower.java and Complex.java are the source Java file

names;
– option -m toPower3 tells JScp to supercompile method toPower3 from the

first .java file;
– options -aggr and -invoke control supercompilation: the first one means

using the standard set of “aggressive” options and the second one means un-
conditionally invoking (inlining) all method invocations at supercompilation
time.

In Fig. 3 and Fig. 4 the actual output from the current version (0.1.99) of
the Java supercompiler, which can be downloaded from the project site [6], is
shown.
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public final class Complex

{

public final double re;

public final double im;

public Complex(double real, double imag)

{

re = real;

im = imag;

}

...

public Complex times(Complex b)

{

Complex a = this;

double real = a.re * b.re - a.im * b.im;

double imag = a.re * b.im + a.im * b.re;

return new Complex(real, imag);

}

...

}

Fig. 1. A fragment of class Complex

public class ComplexPower

{

public static Complex toPower(Complex x, int n)

{

Complex res = new Complex(1, 0);

while (n != 0) {

if (n % 2 == 1)

{ n=n-1; res = res.times(x); }

else

{ n=n/2; x = x.times(x); }

}

return res;

}

public static Complex toPower3(Complex x)

{

return toPower(x, 3);

}

}

Fig. 2. Source class ComplexPower and method toPower3 to be supercompiled
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public static power.Complex toPower3(final power.Complex x_1)

{

//{ 1 power.ComplexPower.toPower(power.Complex x_1, int 3)

power.Complex res 2 = new power.Complex(1D, 0D);

//{ 2 power.Complex res_2.times(power.Complex x_1)

double re_5 = x_1.re;

double im_6 = x_1.im;

power.Complex res 7 = new power.Complex(re_5, im_6);

//} 2 power.Complex res_2.times(power.Complex x_1)

//{ 2 power.Complex x_1.times(power.Complex x_1)

double double_12 = re_5 * re_5;

double double_13 = im_6 * im_6;

double real_14 = double_12 - double_13;

double double_15 = re_5 * im_6;

double double_16 = im_6 * re_5;

double imag_17 = double_15 + double_16;

power.Complex res 18 = new power.Complex(real_14, imag_17);

//} 2 power.Complex x_1.times(power.Complex x_1)

//{ 2 power.Complex res_7.times(power.Complex x_18)

double double_23 = re_5 * real_14;

double double_24 = im_6 * imag_17;

double real_25 = double_23 - double_24;

double double_26 = re_5 * imag_17;

double double_27 = im_6 * real_14;

double imag_28 = double_26 + double_27;

power.Complex res_29 = new power.Complex(real_25, imag_28);

//} 2 power.Complex res_7.times(power.Complex x_18)

//} 1 power.ComplexPower.toPower(power.Complex x_1, int 3)

return res_29;

}

Fig. 3. Residual method toPower3 before post-processing (underlined variables
are redundant)

public static power.Complex toPower3(final power.Complex x_1)

{

final double re_5 = x_1.re;

final double im_6 = x_1.im;

final double real_14 = re_5 * re_5 - im_6 * im_6;

final double imag_17 = re_5 * im_6 + im_6 * re_5;

return new power.Complex(re_5 * real_14 - im_6 * imag_17,

re_5 * imag_17 + im_6 * real_14);

}

Fig. 4. Residual method toPower3 after post-processing
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Figure 3 contains the residual code before post-processing (which is output
by option -raw). Notice the residual instance creation expressions, whose values
are assigned to local variables with underlined names. The new expressions are
redundant, since the underlined variables do not occur elsewhere. In this simple
case the redundant variables are found even by the algorithm implemented in
the Eclipse development platform. Its GUI shows this by similar underlining.

Figure 4 shows the final residual code. Post-processing also performs various
equivalent transformations of code to make it more readable.

5 Conclusion and Related Work

The main contributions of our work on supercompilation of object-oriented lan-
guages are as follows:

– the method of supercompilation of code with mutable objects based on sep-
aration of the process into two stages: first, during driving and supercom-
pilation proper, (almost) all operations on objects are residualized; second,
thus obtained redundant code is eliminated by a specially developed post-
processing;

– practical demonstration that a certain post-processing analysis is sufficient
to eliminate the overwhelming majority of the redundant code;

– user-controlled configuration analysis based on width-first unfolding of a con-
figuration graph rather than depth-first one used in existing supercompilers
for functional languages.

To the best of our knowledge, this work is the first attempt to apply supercompi-
lation-like methods to object-oriented languages. It goes without saying that it
is based on previous works of various authors on supercompilation of functional
languages, first of all on the works by V.F. Turchin. Before we have undertaken
a venture of supercompilation of Java, it was very important for us to extract
its essence from the gory details. The works [3] and [1] on simplification and
clarification of basic notions of supercompilation were the most important for us
to become optimistic.

The closest line of research is specialization of programs in object-oriented
languages by partial evaluation. The main problem to be addressed is the same—
evaluation of mutable objects at specialization time. However, the early work
avoided this problem by restricting to immutable objects. Then, the method
was extended to cover more and more parts of object-oriented notions. The
most valuable works are that by U.P. Schultz et al. for Java [12] and a later
one by Yu.A. Klimov et al. for the Common Intermediate Language (CIL) of
the Microsoft.NET platform [2,7], which have extended the “polyvariance” of
binding time analysis almost to the limit and allowed for all computations to be
performed at specialization time when enough data is known.

As usual, supercompilation for object-oriented languages as an “on-line” tech-
nique is capable of performing deeper specialization than “off-line” partial eval-
uation. Experiments with partial evaluators and supercompilers show that ap-
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plication code and libraries often require to be refactored, but the amount of
changes in the case of supercompilation are rather small and reasonable.

Concluding, we would like to say that the results of our development of the
experimental Java supercompiler, the quality and even readability of the residual
code, have exceeded our expectations, and hidden rocks turned out to be smaller
than we were afraid of in advance.
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