
An Experience with Term Rewriting for
Program Verification

Sergei D. Mechveliani ?

Program Systems Institute, Pereslavl-Zalessky, Russia,
mechvel@botik.ru

Abstract. We have developed a proof assistant based on many-sorted
term rewriting, unfailing completion, and inductive reasoning. We are
going to interface it to our computer algebra library. Its application also
includes automated program and digital device analysis. It also can be
used for generating certificates for proofs and programs, with automatic
certificate check. The system and the CA library are implemented in the
Haskell language.

Key words: automatic equational prover, term rewriting, inductive rea-
soning, proof certificate.

1 Introduction

Having designed a computer algebra library DoCon [Me1], we try to extend this
system with the ability of automatic reasoning. In this paper we shortly describe
the aims and the design principles of our program system for this project.

1.1 The Aim of the Project

The aim is to develop an efficient proof assistant for providing proof certificates
for the areas of (1) mathematics, (2) functional programming, (3) digital device
analysis.

We need to keep in mind that the general problem of the proof search is
algorithmically undecidable. So far, we presume that a human researcher does
the main parts of the proof search, the ones which need more ingenuity, and
orders the program assistant to fill the “technical” parts with detailed proof.
This process is iterated. This approach should lead to the two benefits:
(1) human effort economy in solving problems, (2) proof certificate.

It is known from mathematical logic that each mathematical proof can be
unwind to a sequence of elementary steps. Each elementary step is similar to the
following: to superpose two formulae (equations) by substituting appropriate

? This work is supported by the Program of Fundamental Research of the Russian
Academy of Sciences Presidium (“Razrabotka fundamentalnykh osnov sozdaniya
nauchnoj raspredelennoj informatcionno-vychislitelnoj sredy na osnove tekhnologij
GRID”).

120 Sergei D. Mechveliani

expressions for universally quantified variables, and to derive by this another
formula (Robinson’s resolution in mechanized reasoning). A proof certificate is
a symbolic code consisting of elementary steps of this kind. This is a matter
of a program assistant: to obtain the details of certificate and also to check
automatically a certificate of a proof or program provided with such by any
other system — if this system supports the certificate standard. A certificate
guarantees the truth of the statement and that there is no error in the proof.

But to be really usable, such a proof assistant needs

– to “understand” a high-level object language which is close to the human
mathematical language,

– to be able to incorporate and use an algorithm and knowledge library for
each domain of application,

– to have a powerful proof search strategy, in order to make the automatic
proof search part possibly greater (for we think, in the practice of modern
assistants, more than 99 % of the effort is by human).

1.2 About our Approach in General

The object language of our system is of the many-sorted term rewriting and also
of the predicate calculus. An object program (subjected to verification) is repre-
sented as a set of rewrite rules. We represent a knowledge about a computation
domain in the form of equations and apply the technique of many-sorted term
rewriting. The predicate calculus statements also convert to equations (in the
proof by contradiction) represented as Boolean terms. This enables refutational
proofs via completion. The inductive inference is applied for the proofs in the
initial model, and it cooperates with completion in a natural way.

As to application to programming: inductive proofs for programs correspond
to establishing truth in the initial model for a set of equations [Hu:Op].
Introductory reading [K:B], [Hu:Op], [Hsi:Ru], and [Lo:Hi] introduce to term
rewriting (TRW) and its completion method. [Sti] explains unification modulo
associativity and commutativity, which leads to AC-completion (implemented
in our prover). [Hsi] describes how TRW (with extension to Boolean terms)
is applied to refutational proof in predicate calculus. [Bu:Al] and [Bu2] present
explanations about language and a program system Theorema for proof assistant
which looks as the most advanced modern project of this kind. Another two
assistant examples: Coq, Isabelle.

Our prover and the DoCon library are implemented in the Haskell language.
Our prover is called Dumatel. This joke Russian word is taken from the
novel “Skazka o troike” by the brothers Strugatsky, and it can be translated
as “thinker”.

Dumatel is a library of Haskell functions and structures.
About other projects There exist many prover systems. We pay attention to
theoretic principles, preferring to implement them in our own system — due to
desired interface to our computer algebra library, and due to other reasons. The
main particular points of our prover design are the following.

Term Rewriting for Program Verification 121

– The intention to express, as possible, all knowledge via equations and TRW.
– Extension of “unfailing” completion to Boolean terms, with a particular

treatment of order on monomials.
– Proof by cases, combined in a special way with completion.
– A particular procedure for the search of a useful lemma for inductive proof.
– The resource distribution approach in the proof search.
– Symbolic representation of a proof search state by an explicit tree data.

We use the following abbreviations and denotations:
AC — associativity and commutativity, BT — Boolean term (with &, xor);
CA — computer algebra, ground term — a term free of variables;
IL, OL — (respectively) implementation language and object language;
TRW — term rewriting, ukb(b) — unfailing Knuth-Bendix completion;
&, |, xor, ==> — Boolean connectives “and”, “or”, exclusive “or”, implica-
tion;
‘‘==’’ is the syntactic equality on terms; =E= is the equivalence relation on
terms defined by the set E of equations contained in a calculus.
“Proof (of a statement) in initial” means (as standard) a proof of this statement
for the initial model of the considered calculus (theory).

2 The Prover Principles and Design

Programming system and languages So far, we choose Haskell as implementa-
tion language. Here we shall call it IL, for generality. The prover is a program
written in IL which processes specification data. A specification represents a
calculus in the object language (OL) of many-sorted equational specification.
Representation of a proof goal This is a data g :: Goal of IL containing
1) a calculus calc = goalCalculus g, 2) the statement f = goalFormula g

(in the predicate calculus language) which needs to be proved in calc,
3) the kind mode = goalMode g of the truth and proof: InVariety or InInitial.
Proof search state, representation of proof search
The prover has a set StepKinds of a few search step kinds (attempt kinds),
each one presenting a particular method for an attempt to find a proof from the
current search state (Dumatel-1.06 has 5 main search step kinds). Each attempt
is restricted by the resource rcPerStep measured in a certain conventional unit.
When this resource is exhausted, the attempt stops, returning the current state.

The search state is represented by the IL data ProofSearchState. This is
a tree which has sub-goals as nodes, and as edges it has search steps, where
each attempt stores its current state. When the sub-goal is proved, it is replaced
with the true node, and all the tree simplifies according to the meaning of each
edge. The proof success is expressed by the tree of a single node containing the
formula true. The current (large) action loop of the proof search is: choosing
of an appropriate leaf in the search state tree and either continuing the attempt
stored in this leaf or adding another (appropriate) attempts (with new edges)
to this leaf. The new state is appended to the list of search states. So, the

122 Sergei D. Mechveliani

intelligence of the proof search strategy depends only on how wisely it selects
the current leaf, search step kind, and parameters for this step.

Each node in the search tree has the kind: All or Any. ‘‘All’’ means that
the truth of the statement in this node is conjunction of the statement truth of
each of the “sons” of this node. ‘‘Any’’ means disjunction of their truth. When
a node is proved, the tree simplifies according to the kind of each node.
Prover This is the IL function prove which takes an initial search state and
appends to it the list of the search states built according to the strategy. The
default strategy for the proof search is: develop the state tree by search in breadth.
The result list can be printed out. The printing formats allow the user to see the
search progress with skipping details or in a more detail. The time being taken
by each such an attempt is restricted by the given resource rcPerStep.

If the search fails, the result state list may unwind infinitely. Concerning this,
we keep in mind that evaluation in Haskell is “lazy”. Also it is always possible
for a client function to apply the function prove and take first n states from
its result.
The resource distribution approach Each method in a search step has the re-
source limit rcPerStep. Such a method calls for various sub-functions: comple-
tion procedure, trying substitutions with constants, recursive calls of the prover,
and so on. Many of these sub-functions take an additional argument rc — a
resource bound to be spent. Such a function also returns the remainder rc’ of
the resource. If this value occurs non-zero, the prover adds it when calls other
sub-functions. The idea of this approach is to prevent the strategy from running
into infinity in an unlucky search step. For example, the search step by comple-
tion may loop infinitely for some data, and it is impossible to uniformly predict
when it will occur infinite.
Trace data for proof certificate Most of the prover functions take the trace data
among the arguments and accumulate it in the result. For example, the function
reduce returns the result term and also the trace sequence of the reduction:
which current term is reduced to which term by applying which equation, etc.
This is a provision for the proof certificate. Because an automaton can check the
proof by applying one by one the elementary steps returned in the trace. Again,
the “laziness” of Haskell is very useful here. Because if the client function does
not use the trace, then the trace part of the result does not spend memory nor
time.
Parts of a calculus A calculus consists of description of several sorts, operators,
variables, rules, equations, BT (converted skolemized formulae), description of
a term ordering ‘‘>>’’ and its operator precedence. We use here a “sugar”
operator declaration which is not yet implemented. For example,

+ : Natural Natural -> Natural ...

means a binary infix operator on the sort Natural.

Term Rewriting for Program Verification 123

2.1 Rules, Equations, Term Ordering, Reduction

The list rules is an OL program. The interpreter evaluate calc t evaluates
this program, contained in the rules part of the calculus calc, at the data term t
as usual in rewriting programming, and with treating variables in t as constants.
This evaluation is required to terminate.

A partial term ordering ‘‘>>’’ is an IL function to compare terms. It de-
pends on the operator precedence table. It must satisfy the restrictions formu-
lated in [Hsi:Ru]. The equation set in a calculus is often not Church-Rosser, and
the prover does not rely on any particular order of applying equations. Instead, it
exploits that unfailing completion is directed to a ground Church-Rosser equation
set. Equations and rules must define the same equivalence relation =E= on terms.
Often the initial equations appear as converted from the rules by re-orienting
the rule sides according to the TRW ordering. The reduction by equations and
equation superposition are subdued to the TRW ordering [Hsi:Ru]. The function
reduce calculus t, reduces a term t to the normal form by equations under
the given term comparison.

With equations, it is possible to do program computation as well as reasoning.
Also the program evaluation can be modeled (at a cost overhead) by setting ap-
propriate ordering and applying the function completeAndReduce. This method
intermingles unfailing completion and “ordered” reduction.

2.2 Boolean Terms

BT represent skolemized predicate calculus formulae in the form of Zhegalkin
polynomials f. They have the meaning of the Boolean equation f = 0
(= false). We prefer to use BT, with special unification and superposition
methods for BT, because the connectives & and xor have more properties than
just being AC operators, and we like to use these properties in forming super-
positions. For example, the cancellation law for xor holds.

In our system, BTs appear in the calculus as in the following example (in the
Section 3). The formula forall [X,Y] (X > Y ==> not (Y > X)) specified for
the calculus list is converted to the equation (not (X > Y) | not (Y > X)) +

1 = 0, and then, to the BT (X > Y)&(Y > X) (a monomial). This conversion
is based on the correspondence

0 <-> false, 1 <-> true, & <-> multiplication, + <-> xor, (+1) <-> not.

A BT is a (commutative) sum of several different monomials. Each mono-
mial is a (commutative) product of several different atoms. A monomial has an
integer modulo 2 as its coefficient. The law A & A = A holds here. In the refu-
tational proof, the prover applies the formula negation, skolemization, bringing
to a conjunctive normal form. The disjuncts are converted further to BTs. The
obtained BTs are added to the calculus, and there applies completion, with the
aim to derive a BT true, which stands for the equation true = false.

124 Sergei D. Mechveliani

2.3 Completion

Its function ukbb rc calc goals <other arguments> is designed after the
principles by [Hsi:Ru] and also applies various optimizations. It is also extended
to process Boolean equations in the form of BT. The method’s ideology for the
BT part is of the RN+ strategy by [Hsi]. The procedure also applies intermediate
reduction of goals. Completion stops when the resource is zero, or all the goal
facts are reduced to trivial or the current set of the facts is complete. In returns
a set of facts and the resource remainder rc’.

We also apply certain optimizations: with a special ordering on b-monomials,
a stronger reduction relation on BT, and others.

2.4 The Search Step Kinds

They are
(pCp) positive goal completion and reduction (always pre-applied),
(cnf) bringing to conjunctive normal form (always pre-applied),
(arC) proof by substituting arbitrary constants for variables,
(ec) proof by parting equational conditions from implication,
(nCp) negation (, skolemization) and refutation by completion and cases,
(ind) induction by an expression value — for a universally quantified formula

and the goal mode InInitial.
(lsi) proof by searching lemmata

(LSI abbreviates “Lemma Search for Initial model”).

(pCp) performs a limited number of completion steps, together with reduc-
tion of the formula. If the formula simplifies to true, then the goal is proved and
deleted.
Induction by an expression value (ind): when in a given calculus a sort S is
attributed with the annotation GeneratedBy <list of operators>, (for
constructing ground terms of this sort), the prover recognizes the correctness of
proving a statement for S by induction by the sort construction with the given
operators. The prover tries various expressions for induction by their value. In
the current version, an expression for induction can be only a variable from the
list under the ‘‘forall’’ construct in the goal formula.

We skip here explanation for the inference rules arC, ec. Let us describe
shortly the remaining rules of nCp and lsi.
Refutation by completion and cases
The functions refuteByCompletion, proveByNegationAndCompletion im-
plement the inference rule (nCp). A calculus specification may contain a con-
struct for finite enumeration of a sort with constants. And the above two refu-
tation procedures rely on such construct. For example, the library calculus bool
provides the enumeration [true, false] for the domain Bool. For expressing
such enumeration, the prover has the construct

FiniteEnumeration S [c_1,...,c_n].

Term Rewriting for Program Verification 125

Its meaning is: only those models are taken in account for the proof, in which
each value of the sort S coincides with some value listed in the enumeration.
Respectively, the refutation applies completion together with equating the enu-
meration constants to the selected terms. Half of the resource is spent on the
attempt by completion only. If this fails, the remainder is spent on completion
with finding and applying the relevant cases. In each “case”, completion applies
to the calculus extended with the equations gi = ci, where ci is one of the enu-
meration constants for the domain of a ground term gi. To make the procedure
more feasible, the part of refuteByCompletion applies certain heuristics for
selection of appropriate terms gi.
Lemma search This is a procedure of looking through the candidate formulae for
lemma, with a certain fast check for rejection, and with the attempt of inductive
proof (under a certain mean resource) for the candidates which have passed the
check. The prover adds the proved lemmata to the calculi of all appropriate
nodes in the current search state. This approach of LSI increases greatly the set
of practically provable statements.

3 Proof Search Example.

Let us define in OL the calculus list for ordering lists. The first line of the
below IL program builds the library calculus boolCalc, and the further lines
add declarations to extend it with the needed sorts, operators, and equations.
By all this, it imports the sort Bool together with the Boolean connectives and
their laws (equations). This forms the calculus list. It has the sort Elt for list
elements and sort List for lists over the domain Elt. The empty list operator
nil and the operator ":" : Elt List -> List for prepending an element are
the constructors for the list data. The declaration SortGen List [[nil, ":"]]
helps the prover to recognize that induction by these constructors for List is a
correct way to prove statements for the initial model of the calculus list with
respect to the domain List.

The operator ‘‘>’’ is for an order relation on Elt. The library function
addFormulae adds to the calculus the formula expressing a couple of usual ax-
ioms for the properties of ‘‘>’’. This predicate calculus formula is converted to
BT and takes part in completion during the proof search. The predicate eq_Elt
is for equality on the domain Elt. The predicate isOrdered is for expressing
that a list is ordered with by the relation ‘‘>’’.

The Rules part of this calculus actually contains the program to evalu-
ate the ground terms constructed via the above operators. This is evaluation
by rewriting, each rule applying “from left to right”. For example, the library
function call evaluate list (insert b (a: c: nil)) results in the term
a: b: c: nil.

3.1 A Digression: the Idea of Equational Reasoning for Programs

In order to reason about this program, the prover adds equations made from
these rules — see in the sequel the call of the library function

126 Sergei D. Mechveliani

rulesFromCalculusToEquations. The term ordering cp is set as a certain rpos
library function (currently, the default one), which details we skip here. The
library function ‘‘prove’’ does reasoning about the “program” of list in
terms of the above equations, by applying them, maybe in both directions, by
superposing them, and also comparing terms by cp to find which expression is
“simpler”. The equation set is considered rather as a calculus than a program
for evaluation. For example, concerning the above program insert, the prover
uses that the “input” term insert b (a: c: nil) equals to the “result” term
(a: b: c: nil) modulo the equations obtained in the calculus list, and also
that the latter term is conceptually “simpler” (by the TRW ordering cp) than
the former.

Of course, this approach is applied to all programs. Also this approach is for
reasoning about algebraic objects, in mathematics.

Concerning application to the program analysis, we stress that TRW and
equational reasoning methods (as completion) really use all the information con-
tained in a set of equations (the completeness property of the method).

3.2 Continuing with Example

The predicate isOrdered is defined in the rules via ‘‘>’’ and the auxiliary
operator isOrd. The operator insert for inserting an element to a list according
to the order ‘‘>’’, and its auxiliary operator ins, are bound in mutual recursion.

boolCalc = bool_default rpos

list = addFormulae preList

(forall [X,Y] (X eq_Elt Y xor X > Y xor Y > X))

where

preList =

(\calc -> addEquations calc $ rulesFromCalculusToEquations calc) $

addDeclarations_default boolCalc $

Calculus

{Sorts [Elt, List], SortGen List [[nil, ":"]],

Operators

{nil : List

: : Elt List -> Bool (ParsePreceds 5 5),

> : Elt Elt -> Bool ...,

eq_Elt: Elt Elt -> Bool (...Commutative), --equality predicate on Elt

insert : Elt List -> List ...,

ins : Elt Elt List Bool -> List ...,

isOrdered : List -> Bool ...,

isOrd : Bool Bool -> Bool ...,

a, b, c : Elt -- constants for constructing list examples

}

opPrecedDecls = [... [insert, ins, isOrdered, isOrd, :, nil, >,

eq_Elt, a, b, c, false]], ...

TermComparison = rpos

Variables = [X Y Z : Elt, Xs Ys Zs : List, bo : Bool],

Rules =

Term Rewriting for Program Verification 127

[X eq_Elt X -> true, -- laws for equality on Elt

a eq_Elt b -> false, a eq_Elt c -> false, b eq_Elt c -> false,

X > X -> false , -- laws for order on Elt

a > b -> false, a > c -> false,

b > a -> true, b > c -> false,

c > a -> true, c > b -> true,

isOrdered nil -> true,

isOrdered (X:nil) -> true,

isOrdered (X:Y:Ys) -> isOrd (X > Y) (isOrdered (Y:Ys)),

isOrd true bo -> false,

isOrd false bo -> bo,

insert X nil -> X : nil,

insert X (Y : Xs) -> ins X Y Xs (X > Y)

ins X Y Xs true -> Y : (insert X Xs),

ins X Y Xs false -> X : Y : Xs]

The above declaration opPrecedDecls = ...insert, ins, >, ...
defines the operator precedence relation preced. By setting the precedence the
user gives the prover a notion of which “program” (operator) is simpler, and
gives a certain direction of reasoning. Together with the library function rpos,
it defines the term comparison related to this calculus. In particular, due to
this precedence, the prover will consider the term (insert a (b:Xs)) as more
complex than (ins a b Xs (a > b)), so that the former will be replaced with
the latter, and not the reverse.
Goal setting. Example
Prove that if a list Xs is ordered, then the list (insert X Xs) is ordered.
This is actually an important part for verification of the program ‘‘insert’’.
In our system, this means to prove the above statement in the initial model of
the calculus list. The user IL program ‘‘main’’ is short. It parses the goal
formula

forall [Xs, X] (isOrdered Xs ==> isOrdered (insert X Xs))

to fF :: Formula and builds the Goal expressing the problem of derivation

list |-InInitial- fF.

It makes the initial search state initState from this goal, and applies
prove rcPerStep initState (for this example, it is sufficient to set rcPerStep
= 2*10^6). It also prints out the result list of the proof search states.

Here we skip the definition of the function ‘‘main’’. Let us describe how
the prover forms the successive search states (trees).

First, the strategy applies all the following fitting search step kinds to the
initial state: pCp, nCp, arC, ind. For this example, we skip a particular search
step LSI, in order to demonstrate the main and regular part of the strategy. This
stage produces the search tree of four leaves. The kind of the tree root is Any,
because by the meaning of the prover standard search steps, the prover needs

128 Sergei D. Mechveliani

to prove at least one of these leaves. In the next pass-through, the prover tries,
in succession, to apply the corresponding proof methods in these leaves, trying
to prove the current leaf under the resource rcPerStep. For the evident reason,
this attempt fails for the leaves of pCp, nCp, arC, and the prover spends some
resource for this.

The leaf of ind Xs means induction by the value of Xs. Further, this leaf
branches to the base of induction (substitute Xs = nil) and inductive step. The
goal formula of the “step” has new variable z0. The node of induction has the
kind All, because by its meaning, both the base and “step” goals need to be
proved.

The prover continues this search in breadth by visiting the current set of
leaves, except the ones, which are skipped by various optimizations in the strat-
egy and also by the user marks (hints) ‘‘closed’’. After several steps, the
prover forms the state tree shown schematically below. In this picture, the mark
“-” near a node means that this node is not proved, so far, and “+” means that
it is proved.

-------------------- goal

/pCp /nCp /arC | ind Xs -

... &1/ \ &2

- - - pCp / \

+ -------------------

| ind z0 \ nCp- \ arC-

&1/ \ &2

+ nCp | | nCp +

The symbols &1 and &2 denote the branches of the induction base and step
respectively. The induction by Xs proves its base trivially. And the step formula
is

forall [Y]

((forall [z0,X] (isOrdered z0 ==> isOrdered (insert X z0))) ==>

(forall [z0,X] (isOrdered (Y:z0) ==> isOrdered (insert X (Y:z0)))))

In the further induction by z0, the “base” formula (substitute z0 := nil) is
reduced by the list calculus to

forall [Y,X] (isOrdered (ins X Y nil (X > Y))).

The attempt with nCp builds negation for this formula and produces the calculus

list U [isOrdered (ins A B nil (A > B)) = false],

with the indefinite Skolem constants A, B : Elt, aiming to derive a contra-
diction. It tries completion for this — under the resource rcPerStep/2. But this
occurs not sufficient.

Then, it extracts a useful information from the failed proof attempt. To do
this, it searches for appropriate ground subterms in this completion result which
domains are provided (in the calculus specification) with a finite enumeration.

Term Rewriting for Program Verification 129

The calculus includes bool, and the latter specifies an enumeration for the sort
Bool. The “case” procedure finds a ground subterm A > B, which value cases
may simplify the search. The first case A > B = true is added to the calculus,
and the formula is reduced to isOrdered (B : (insert A nil)) = false, and
then, to isOrd (B > A) true = false. The BT part of the calculus contains
a representation of the law (X > Y & Y > X) = false. It superposes with the
“case” equation producing B > A = false. This derives the equation

isOrd false true = false,

and then, true = false, finishing the refutation for the case. The case of
A > B = false is refuted in a similar way.
Nested selection of subterms for “cases”
Further, there are applied several search steps, and among them — induction
by z0. Its “step” formula is

forall [y01,z01]

(forall [y0] ((forall [X] (isOrdered z01 ==> isOrdered insert X z01)) ==>

(forall [X] (isOrdered (y0:z01) ==> (isOrdered ins X y0 z01 (X > y0)))))

==>

forall [y0]

((forall[X]...)==> (forall[X] (isOrd (y0 > y01) (isOrdered (y01:z01))

==> (isOrdered ins X y0 (y01:z01) (X > y0))))))

This formula is negated and skolemized, several equations are added to the
calculus. Here refutation deals with the ground equations like

isOrdered (ins A y0 (y01:z01) (A > y0)) = false.

It considers the cases for the term A > y0. It fails to refute this set of two cases.
Then, it searches among the facts produced by completion for new ground terms
suitable to consider their cases. It finds a new subterm A > y01. Refutation by
completion considers the sub-cases for this term: the procedure makes recursion.
This continues until either the resource is out or the complete set of the cases is
refuted. In our example, it finishes with the report of kind

Proof by negation and completion for the goal ...There were considered

6 cases for appropriate ground subterms ... The branch is proved.

By this, the lower two leaves of the current tree (on the picture) become
proved, the whole tree simplifies according to the kind in each node, and the
tree is converted to the trivially true one.

So, this goal is proved by combining the above standard proof attempts. The
successful branch contains two induction edges, and also the final attempt nCp
of the proof by negation and completion together with considering “cases”.

The whole search process is similar to human reasoning, when a human
searches for the proof of the above statement for the program ‘‘insert’’.

4 Possible Development Directions

There are many ways in which the current prover should progress. Let us name
the three of them.

130 Sergei D. Mechveliani

1. Similarly as with human reasoning in solving problems, really efficient meth-
ods are feasible only for a specialized subject domain. For example, sorting
methods, finite groups, polynomials, and so on. This leads to specialized
knowledge bases, and needs an interface to a CA library.

2. Various improvements and extensions are needed for the existing strategy.
Many optimizations are possible for the BT processing and AC-Id comple-
tion.

3. It is useful to extend the object language with conditional rewriting, high-
order operators, functoriality.

References

[Bu:Al] Buchberger, B., Dupré, C., Jebelean, T., Kriftner, F., Nakagawa, K., Văsaru,
D., Windsteiger, W. The THEOREMA Project: A Progress Report.
In: Symbolic Computation and Automated Reasoning (Proceedings of CAL-
CULEMUS 2000, Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning), (98–113) August 6-7, 2000, St. Andrews, Scotland, A.K.
http://www.risc.uni-linz.ac.at/people/buchberg/main publications.html

[Bu2] Buchberger, B. Algorithm-Supported Mathematical Theory Explanation: A Per-
sonal View and Strategy. In Proceedings of AISC 2004 7th International Confer-
ence on Artificial Intelligence and Symbolic Computation, September, 2004, RISC
Institute, Linz, Austria. Lecture Notes in Artificial Intelligence, Volume 3249,
2004, pages 236 – 250.

[Hsi] Hsiang, J. Refutational theorem proving using term-rewriting systems.
Artificial Intelligence, 1985, Volume 25, pages 255-300.

[Hsi:Ru] Hsiang, J., Rusinowitch, M. On word problems in equational theories.
In Th. Ottman (ed.), Proceedings of the Fourteenth International Conference on
Automata, Languages and Programming, Karlsruhe, West Germany, July 1987,
Springer Verlag, Lecture Notes in Computer Science 267, pages 54 – 71, 1987.

[Hu:Op] Huet, G., Oppen, D. Equations and rewrite rules. A Survey.
In “Formal languages: perspectives an open problems”, pages 349 – 405. New York,
Pergamon Press, 1980.

[K:B] Knuth, D., Bendix, P. Simple word problems in universal algebras.
In John Leech, editor, “Computational Problems in Abstract Algebra”, (263–297),
Pergamos Press, 1970.

[Lo:Hi] Löchner, B., Hillenbrand T. A Phytography of Waldmeister.
AC Communications (15) (2,3) (2002) (127–133).

[Me1] Mechveliani, S. Computer algebra with Haskell: applying functional – categorial
– “lazy” programming.
In Proceedings of International Workshop CAAP-2001, pages 203–211, Dubna,
Russia. http://ca-d.jinr.ru/confs/CAAP/Final/proceedings/proceed.ps

[Me2] Mechveliani, S. The Dumatel program system and book (manuscript).
A preliminary version of 1.06-pre3 (half of the manual need update).
http://www.botik.ru/pub/local/Mechveliani/dumatel/1.06-pre3/

[Sti] Stickel, M.E. A Unification Algorithm for Associative-Commutative Functions,
Journal of the Association for Computer Machinery, Volume 28, No 3, (1981),
pages 423–434.

