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Abstract. Research in the field of creating systematical methods for
specialization of programs with respect to fixed properties of their ar-
guments, compositional structure and given invariants were started by
Russian scientists A. P. Ershov (“mixed computation”), V. F. Turchin
(“supercompilation”) and Japanese scientist Y. Futamura (“generalized
partial computation”) in the 1970-ths. To the current moment a huge
amount of facts mainly related to the object domain of functional pro-
gramming languages was accumulated in the literature.
Ideas of supercompilation were mainly being studied on the base of a
functional programming language REFAL, although a series of the re-
sults were polished on the LISP’s experimental base. At present time,
along with a number of primitive supercompilers constructed for simplest
purely theoretical languages, there exists the only experimental super-
compiler SCP4 for a real programming language (REFAL-5). The name
SCP4 was suggested by V. F. Turchin as reflecting the history of the
supercompilation ideas.
In this paper we consider various approaches to formulation of the spe-
cialization task per se. We give a short survey of the main achievements
derived (to the given moment) in the field of specialization of functional
programs, analyze principal distinctions between supercompilation and
other existing methods. We survey the attempts of constructing of su-
percompilers.

Keywords: Program transformation, program specialization, supercom-
pilation, partial evaluation, REFAL.

1 Preliminaries

Definition 1. An implementation of a functional programming language < is a
quadruple 〈P,D,U,T〉, where sets P, D are called as a <-program set and a <-data
set correspondingly; partial recursive functions U: P×D 7→ D and T : P× D 7→ N
are named correspondingly as a universal function (or semantics) and a time
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measure function of the < language. Here N stands for the set of the natural
numbers.

Below we use the shorthand notation p(x) for U(p,x).

2 On Two Task Statements of Program Specialization

Two different statements of the specialization task per se are considered in the
scientific literature. We will formulate them in natural precision terms. The dif-
ference between the concepts of a total recursive function and a partial recursive
function is essential in the following statements of the tasks.

Let an implementation of a functional programming language < = 〈P,D,U,T〉
be given, where D =

⋃
n∈N Mn for a nonempty set M .

The task 1. Let a program p(x,y) from P define a partial recursive function
F (x, y) : D × D 7→ D. Given a value of the first argument x0 ∈ D of the function
F , the specialization task requires to construct another program q(y) ∈ P such
that

∀y ∈ D.(q(y) = p(x0, y)) ∧ (T(q,y) ≤ T(p,x0, y)),

where the value q(y) determined if and only if the value p(x0,y) determined.
Otherwise their non-determination types (abnormal stop or infinite evaluation
time) must coincide. That is to say, in this task the programs q(y) and p(x0,y)
define the same parial recursive function, namely F (x0, y).

The task 2. Let a program p(x,y) from P define a total recursive function
F (x, y) : X × Y 7→ D, where X ⊂ D, Y ⊂ D. Given a value of the first argument
x0 ∈ D of the function F , the specialization task requires to construct another
program q(y) ∈ P such that

∀y ∈ Y.(q(y) = p(x0, y)) ∧ (T(q,y) ≤ T(p,x0, y)).

In the other words, in the second task the program q defines an extension of the
total recursive function F (x0, y) : Y 7→ D onto the second argument.

The program q(y) is said to be a residual program.

The substantial part of the tasks is to construct an optimal q
(with respect to the running time).

Various specifications of the concept of optimality (the time measure function
T) define concrete approximations of the specialization task per se. Roughly
speaking, the first task demands that the residual program q has to preserve
the operational semantics of the source program p. The second task is more
natural from the point of view of applications: usually, operational behavior of
the residual program does not matter for users, if the input data do not belong



On the Place of Supercompilation inside Program Specialization 133

to the users’ subject domain. On the other hand, the conditions of the second
task provide more freedom for concrete specialization methods. That frequently
allows construct more optimal residual programs as compared with the methods
restricted with the constraints imposed by the first task.

Supercompilation methods are oriented to solve the second task.

3 A Survey of the Results in the Field of Program
Specialization

Great difficulties arose on the way of development and implementation of the
basic ideas formulated by A. P. Ershov, V. F. Turchin and Y. Futamura. Later
N. D. Jones (Denmark) suggested to weaken the originally set goals at the ex-
pense of the specialization methods [16,14]. This simplified technique known as
partial evaluation is the most developed one to the given moment. It solves the
first specialization task. Trying to solve the tasks of self-application of a special-
izer, also independently formulated by the three above mentioned researchers in
the 70-ths, N. D. Jones together with his colleagues made still another principal
step towards simplification of the specialization methods. In the 1985-th N. D.
Jones, P. Sestoft and H. Søndergaard (University of Copenhagen) succeed in
solving an approximation task of self-application of a Copenhagen partial eval-
uator mix [15]. Here we have to note that there exists always a time measure
function T allowing to construct the following residual program:

q(y) { = p(x0,y); }

i.e. simply copying the source program p and fixing the given value of the first
argument in the entry point of the p. The first results of self-application of mix,
substantially, just slightly differed from the trivial residual program given above.
In the 1995-th [11] N. D. Jones wrote that the length of the residual program
obtained as a result of a simplest task of self-application

mix(mix(p0,x,y))1

of mix with respect to a given three-line program p0(x,y) was five hundred
pages. Here values of y are unknown to both copies of mix; the value of the x
argument is known to the mix being specialized, while it is unknown to the mix
specializing the program p0. Analyzing the residual program the Copenhagen
group suggested the concepts of “online” and “offline” specialization methods
[14]. Below we consider these concepts. The choice of the simpler “offline” meth-
ods allowed in the 1986-th to solve more reasonable tasks of self-application of the
partial evaluator mix [14,35]. By means of introduction of tools rising the arities
of the programs being specialized (as well as their subprograms) in the frames
of the “offline” approach, in the 1987-th [31,33,34], S. A. Romanenko succeeded
in substantial improvement of the structural and running time properties of the

1 Here the underline denotes an encoding.
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residual programs resulted in several tasks of self-application of the Moscow par-
tial evaluator unmix. The following name of his paper describing unmix is self
explanatory: “A compiler generator produced by a self-applicable specializer can
have a surprisingly natural and understandable structure” [31,33].

Offline specialization parts analyzing the source program p and metainterpre-
tation of the local p’s steps (evaluation of which can be done without knowledge
of the concrete values of the unknown part of the steps’ arguments) in separate
processing stages. The input for the first stage named as biding time analysis
(BTA) is the p and information indicating the part of the p’s arguments, which
will be known to the second stage of transformation (metainterpretation) rather
than concrete values of the arguments, and the other part of the arguments,
which will be unknown to the second stage. The first kind of the arguments is
named as static, while the second kind is named as dynamic. The BTA’s output
is an annotated program pann, in which each elementary action is annotated as
static whenever it can be unambiguously interpreted without knowledge of the
concrete values of the dynamic part of the input of these actions-steps. The ar-
guments of every such a step are annotated as static or dynamic as well. The
BTA analyses the static information flow (“movement”) along the program p.
Obviously, the task (per se) formulated for the BTA is algorithmically unde-
cidable. Everywhere here, by default, we mean some approximation of the task
formulated for the BTA. The input for the second stage (which, in fact, is named
just as “specialization” in such an approach) is the pann together with the values
of its static arguments. “Specialization” (the second stage) is logically simple and
decidable; all substantial problems were moved to the BTA. The Jones’ group,
as well as S. A. Romanenko, solved the following task

mix(mixann(pann0 ,x,y))2

rather than the original classical self-application task. The solved task is sub-
stantially simpler as compared with the classical one: both copies of mix perform
only the second stage of transformation and do nothing concerning the biding
time analysis. Later the Jones-Romanenko’s offline self-application experiments
were reproduced and made more accurate by a number of authors. Here is sub-
stantially that the input data (both static and dynamic, represented by the
parameters) for every p’s step are being scanned the only time (by the single
processing) during the “specialization” (the second) stage.

Online specialization performs metacompucation of the steps of the program
p being transformed “on the fly” of analyzing various properties of the program;
generally speaking, in no way a priori restricting itself both in any means and in
the number of processing along the program p (or along segments (parts) of the
program; for example, – along the input data of each program’s step). Each such

2 Here, in the task solved by S.A. Romanenko both mix must be replaced with unmix.
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a processing gives a loop, which, in general case, can not be automatically recog-
nized even if it works without any consequences, not doing transformations, but
only looking for a property such that the program p does not satisfy the prop-
erty. Hence, in general case, this loop will be presented in the residual program
and will increasing the time complexity of the residual program. In any attempt
of such self-application the data processings trying to separate (recognize) the
static data from the dynamic ones will be observed by the transforming copy
of the specializer. That essentially complicates its logic (as compared with the
offline approach). Algorithmically undecidable and decidable parts of the logic
are not separated at all.

Resume: development of the methods of online specialization is much more
complicated as compared with the methods of offline specialization.

By definition, online specialization is lesser restricted in the methods being
used than offline specialization and, as a consequence, is potentially considerably
stronger. The most important point here is as follows: offline specialization is
able to transform only the source program p, while online specialization is able to
transform (and it really performs such transformations in the case of supercom-
pilation) also subprograms constructed by a specializer itself (and, hence, simple
inefficient structures may be presented in such subprograms), but not only the
p’s subprograms written by an human.

Supercompilation and “generalized partial computation” as collections of the
online specialization methods provide much more stronger mechanisms for au-
tomatic program analyzing and transformation as compared with the partial
evaluation technology. As a consequence, they set much more difficult prob-
lems: pure cognitive, algorithmic and technological (implementation of concrete
specializers). The methods of supercompilation and generalized partial compu-
tation, unlike the partial evaluation methods, sometimes allows decrease the
time complexity order of the programs being specialized. The residual programs
are entirely constructed on the base of metainterpretation of the program being
specialized, rather than on stepwise cleaning of the program. The section 4 is
devoted to a survey of the supercompilation ideas.

Apparently, at the current moment, the ideas of generalized partial com-
putation must be considered as the least developed. Unlike partial evaluation
and supercompilation, the generalized partial computation approach to program
specialization is not closed under itself. For example, an experimental semiau-
tomatic specializer WSDFU announced in the 2002-nd [6] turns to an external
theorem prover TPU [2] and to an external knowledge base for proving some
properties of the programs being specialized. We have to note very interesting
examples of specialization of programs with numerical arguments, generalized
partial computation of which results in decreasing the time complexity of the
programs [4,6]. Both the partial evaluation and supercompilation methods can
do almost nothing with numerical data; here the main attention is attended to
the programs transforming the binary trees (partial evaluation) and the finite
sequences of arbitrary trees (supercompilation).
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The partial evaluation methods as the simplest ones have been developed
most thoroughly. Here the main contribution was made by N. D. Jones and his
students. As we already mentioned above, the substantial part of the methods
is the BTA-analysis approximating the algorithmically undecidable part of the
specialization task per se. The task to be solved by the BTA is to most accu-
rately recognize the control operators of the program being specialized, which
can be evaluated without any information of the dynamic part of their input
data, and at the same time the BTA has to terminate most frequently3. The
most success in development of the BTA was achieved by means of analysis of
a size change of a program being specialized (C. S. Lee, N. D. Jones, A. M.
Ben-Amram [22]). The algorithms generalizing of parameterized configurations
in supercompilation and generalized partial computation are analogues of the
BTA; any preliminary annotation of the source program p, which is able to help
in improving the generalization algorithms, can be very useful in the technolo-
gies. As far as we know there exist no attempts of using the BTA’s methods in
the supercompilation context. On the other hand, separation of the BTA and
properly specialization, as well as the orientation on stepwise cleaning of the
source program p, lead to direct (often undesirable) inheritance of the p’s prop-
erties by the residual program (see, for example, the Mogensen’s paper [24]).
Such an inheritance was the subject to be bypassed by S. A. Romanenko, when
he was developing the arity rising algorithm (see above). The original restriction
imposed on partial evaluation to construct the residual programs satisfying the
properties formulated in the Task 1 (see above) puts irresistible difficulties on
the way of very desirable optimizations. For example, the type specialization
problem posed by N. D. Jones in [11] can be decided only in the frame of the
Task 2. That was pointed by J. Hughes in the paper [10] describing some type
specialization methods.

Speaking on partial evaluation the author have to mention the excellent N. D.
Jones’ book “Computability and Complexity from a Programming Perspective”
(1997, [13]), in which N. D. Jones, with a purely theoretical viewpoint, tried to
understand and generalize the experience accumulated in the partial evaluation
filed.

4 An Historical Survey of Development of the
Supercompilation Methods

In 1970-th years V. F. Turchin proposed a number of ideas on automatic program
transformation. He called the idea as “supercompilation”4.

3 The requirement obligating a specializer to terminate on any its input data, usually,
immediately confines the time measure function T to a simplest one; any interesting
transformations cannot be expected.

4 In our point of view the chosen name is poor. Supercompilation is not a kind of
compilation; likewise a multivalued function is not a function and a vector field is
not a field.
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He posed a task to create tools for supervision over the operational semantics
of a program, when the function F being calculated by the program is fixed. Such
supervision must result in a new algorithmic definition of an extension of the
function F . The new algorithm is constructed with the aim of quicker calculation
of the F on fixed arguments (as compared with the original program).

Supercompilation was considered by V. F. Turchin with a point of view an
application of his “metasystem transition philosophy”. In the given paper we are
not interested in the Turchin’s philosophical constructions.

Below we name main stages of the history of development of the supercom-
pilation ideas according to a Turchin’s terminology given in the papers [43,44].
The supercompiler SCP4 was named by V. F. Turchin as well.

The first Turchin’s publication “Ekvivalentnye preobrazovaniya rekursivnykh
funktcij, opredelennykh na yazyke REFAL” (in Russian, “Equivalent transfor-
mations of recursive functions defined in REFAL”) is dated with the 1972-nd
[38]. The language REFAL was originally projected by V. F. Turchin as a met-
alanguage aiming to transform programs (in particularly, the programs written
in the programming language REFAL). In this paper V. F. Turchin describes a
fragment of REFAL called as strict REFAL, in which the time taken by matching
of input data of a function with a pattern is uniformly bounded on size of the
input data. To define the language fragment, a restriction was imposed on syntax
of the patterns. The corresponding strict patterns were called as L-expressions.
All models of the supercompilers5 developed early than the supercompiler SCP4
used subject programming languages including only the strict patterns (or sub-
sets of the strict pattern set). V. F. Turchin introduces (absolutely natural for
any metacomputation) a concept of driving of the L-expressions, although he
does not name the concept. He formulates an equivalent transformation calculus
for the strict REFAL programs. The ideas of the calculus laid the basis for the
supercompilation methods.

The Courant Computer Science report #20 stating many ideas on program
transformation became the second important Turchin’s work (1980, [40]), where
many of the ideas are given very vaguely and, frequently, unconvincing. The
work bristles with examples of non-algorithmic transformations and problem
statements, most of which are not solved up to now. The examples substantially
use the associative property of the REFAL’s concatenation constructor. The
report does put questions but does not answer the questions.

SCP1. The first simplest model of a supercompiler was implemented by V. F.
Turchin, B. Nirenberg and D. V. Turchin in New York, in the 1981-st [48]. The
supercompiler SCP1 was written in a REFAL’s dialect. It worked in a dialog
mode asking a human how to generalize the encountered configurations. Thus
the main problem of approximation of the algorithmically undecidable part of
the supercompilation logic was taken out of the consideration at all. The SCP1
represented an important step in polishing the driving algorithm, which per-
formed metacomputation of calls by need (during the supercompilation stage).
5 Including the supercompilers for LISP’s toy-dialects.
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The authors of the SCP1 succeeded in specialization of a number of simple exam-
ples. One of the examples became classical: a two-processing program replacing
the symbol ’a’ with ’b’ in a given string and, after that, – the symbol ’b’
with ’c’ was specialized to an one-processing program (with respect to the call
context of the two processings, which was directly represented by the syntactic
composition f(g(x))). Thus the SCP1 was aimed to solve the second specializa-
tion task (see Section 2). Later such semantics was named as “lazy” semantics.
In the 1990-th P. Wadler called a program transformation algorithm based on
such driving as “deforestation” [50] and described an algorithmically incomplete
language allowing only finitely many of parameterized configurations for a given
program in iterative repetition of the lazy driving’s steps.

SCP2 was developed by V. F. Turchin in the 1984-th. The Turchin’s paper “The
concept of a supercompiler” published in the 1986-th [42] and describing some
ideas of the SCP2 implementation became the main classical work on supercom-
pilation. The logical negation connective was introduced in the SCP2’s language
describing parameterized configurations. That allowed solve the following clas-
sical program transformation task by the supercompilation methods. An naive
algorithm p(s,x) searching a substring s in a string x was transformed in an
algorithm known as KMP [18]: by means of specialization of the source program
with respect to the first argument p(s0,x). It was shown that the supercompiler
can be used for automatic proofs of simple existence theorems. The generaliza-
tion algorithm implemented in the SCP2 works ad hoc and, as a consequence,
a human help is needed for the algorithm, if one wants to obtain more or less
interesting transformations.

In the 1980-ths, at a Moscow REFAL workshop, A. Vedenov annotated a
speedy completion (by himself) of a release of a REFAL supercompiler. Any
publications or reports on such an actual implementation were not followed.

Two preprints written by Turchin’s students were published by M. V. Keldysh
Institute of Applied Mathematics of the Russian Academy of Sciences in the
1987-th. The works considered several supercompilation problems were “REFAL-
4 – rasshirenie REFALa-2, obespechvajuschee vyrazimost’ progonki” (S. A. Ro-
manenko, in Russian, “REFAL-4 is an extension of REFAL-2, which supports
expressibility of the driving”, [32]) and “Metavychislitel’ dlya yazyka REFAL,
osnovnye ponyatiya i primery” (And. V. Klimov and S. A. Romanenko, in Rus-
sian, “A metaevaluator for the language REFAL, basic concepts and examples”,
[17]).

The work “The algorithm of generalization in the supercompiler” (1988, [41])
became the second impotent Turchin’s paper. The paper describes an algorithm
of generalization of function call’s stacks and proves termination of the algorithm.
The algorithm was called as the Obninsk algorithm cutting the stack; after
a Russian city where Turchin presented the algorithm for the first time. The
Obninsk algorithm is one of most important supercompilation algorithms. The
supercompiler SCP2 was improved by the algorithm (see [46]).
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The first actual attempt of self-application of a supercompiler was done in the
1989-th. A set of parameterized configurations of a program p being specialized
is said to be a basic configurations’ set if the p can be described in terms of the
parameterized configurations. Finite sets of the basics configurations for a num-
ber of concrete simple tasks of self-application were manually constructed as a
result of studying the trace of looping SCP2 self-application. These basic config-
urations’ sets guaranteed termination of the supercompiler SCP2 running on the
given tasks and not using any generalization algorithm. The generalization algo-
rithm was withdrawn from the SCP2 with the goal to achieve self-application.
The basic configurations’ sets corresponding to the chosen simple self-application
tasks were given as inputs to the SCP2. As a consequence, the SCP2 succeed in
the self-application tasks. A paper describing these experiments saw light in the
1990-th [8]. Thus, the algorithmic decidable part (i.e. without the approximating
generalization algorithm) of the simple specialization tasks per se was solved.

In the 1990-th N. V. Kondratiev [19], who is a Turchin’s student, made an
attempt of implementation of a supercompiler for REFAL. The attempt remains
unfinished. A REFAL-graph language was used as an internal language for trans-
formations. The REFAL-graph language is used in the supercompiler SCP4 (see
below).

In the 1992-nd S. M. Abramov and R. F. Gurin (other Turchin’s students)
made a similar unfinished attempt for a simple model programming language
working with the LISP data. The main hindrance, which they were not able to
overcome, was development of an algorithm constructing output formats of the
intermediate functions being constructed during supercompilation.

In the 1992-nd And. V. Klimov and R. Glück published a paper “Occam’s
razor in metacomputation: the notion of a perfect process tree” [7], where the
driving algorithm described in the LISP terms (by means of binary trees). The
main goal of the work was familiarization of western researchers with several sim-
ple ideas of supercompilation. The authors demonstrate the ideas on the simpler
data as compared with the REFAL data. (For various reasons, importance of
the associative property of the REFAL concatenation is not appreciated out of
Russia until now.) The paper refined several concepts of the driving algorithm.
A supercompiler for a simplest model LISP-like language was represented as
well. This simple supercompiler also a priory assumes termination of the su-
percompilation process and does not use the principal generalization algorithm
approximating the algorithmic undecidability of the specialization task per se.

SCP3. The experience of manual constructing the basic configuration’s set in
the experiments on self-application of the SCP2 made it clear that on the way
of completely automatic self-application of supercompilers we are facing with
many difficult problems. In the 1993-rd, V. F. Turchin decided to restrict the
subject language of his supercompiler to a “flat” algorithmic complete frag-
ment of REFAL-5. The fragment forbids the explicit syntactical constructions of
the function call’s compositions. The main goal in developing such a supercom-
piler transforming “flat” programs was achievement of its completely automatic
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self-application. Here the SCP3 itself was developed in the terms of the whole
REFAL. It was supposed that before self-application the SCP3’s sources have
to be translated in the flat REFAL. A crucial step in development of the su-
percompiler SCP3 was an extension of the parameter language describing the
configurations of the program being transformed: adding new types of the pa-
rameters. The additional typing allows be more accurate in description of the
self-application tasks (see details in [47,28]). In the 1994-th, it became possible
to achieve completely automatic SCP3 self-application on a number of simple
self-application tasks. Thus the long standing open question on the principal
possibility of self-application of a specializer constructed on the base of the su-
percompilation methods was positively closed. In the 1996-th, V. F. Turchin,
A. P. Nemytykh and V. A. Pinchuk published a paper (“A Self-Applicable Su-
percompiler”, [29]) stating the basic ideas allowing to make these successful
experiments and describing the experiments themselves. The algorithm general-
izing the flat configurations still did not have a firm theoretical basis, although
it did work completely automatically.

In the 1995-th, M. H. Sørensen (Denmark) [36] suggested to use an Higman-
Kruskal relation [9,21] to make an important approximating decision by the gen-
eralization algorithm: “Given two configurations, have we to generalize them?
Have not?”. This suggestion put the algorithm generalizing the “positive” part of
the configurations (that is to say, a part described without the negation connec-
tivity) on a firm theoretical base. In the 1996-th, M. H. Sørensen, R. Glück and
N. D. Jones published a paper [37] describing a model supercompiler for a sim-
plest subset of the language LISP. In the supercompiler the language describing
the parameterized configurations does not use the negation connective.

In the 1995-th, S. M. Abramov published a book “Metavychisleniya i ikh
primenenie” (in Russian, “Metacomputation and their applications”, [1]), in
which the author describes an algorithm generalizing a negative part of the
configurations. The negative part is given only in the unit-size terms (in the
terms of “symbols/atoms”).

SCP4. A long-continued research (under supervision by V. F. Turchin) of the
author (of this paper) resulted in development and implementation of an ex-
perimental supercompiler SCP4 (1999-2003) for a real programming language
REFAL-5. In other words, without any restriction imposed on the language.
Landmark program transformation algorithms were developed and implemented
during this work. The very key algorithm from the series of the global analysis
algorithms is an online algorithm constructing an output format of a function
F . I.e. the output format is being constructed on the fly of the supercompilation
process. That allows immediately use the constructed format for specialization
(with respect the format) both other functions calling the F and the function
F itself. The SCP4 is the first experimental free distributed supercompiler. An
internet online version of the supercompiler is available as well. In the 2007-th,
the author published a book “Superkompilyator SCP4: obschaya struktura” (in
Russian, “The supercompiler SCP4: general structure”) [28].
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The supercompilation task is in essence a difficult task and, in its nature, an
approximating task. Practically almost any interesting optimization problem is
undecidable. The problem is, on one hand, in step-by-step movement to exten-
sion of the existing methods and algorithms and development of new ones; on
the other hand, in compact description of the algorithms, which allows control
the source code of the supercompiler itself. The existing collection of the basic
methods used by the supercompiler SCP4 allows obtain enough interesting trans-
formations thanks to diversity of composition of the methods. It is appropriate
comparison here the situation with the classical Turing Machine, which possess-
ing a collection of its trivial basic actions, nevertheless, allows define arbitrary
algorithm by means of diversity of the elementary actions.

5 Supercompilation vs. Partial Evaluation

The Turing Machine (TM) gives another cause for returning to comparison su-
percompilation with partial evaluation.

What is the essence of the Jones’ idea simplifying the online program trans-
formation ideas and leading to partial evaluation? The answer is as follows. Given
a finite collection of elementary program transformations {q1, q2, . . . , qn} (i.e. a
calculus) a supercompiler has to manipulate by the trivial transformations like
a juggler with the goal of optimization of a given input program. One part of
these trivial transformations (let it be {q1, q2, . . . , qm}) are responsible for gen-
eralization of the program configurations, while another part is directly used for
metainterpretation (for specialization itself). As mentioned above (see Section 3)
the BTA algorithm is an analogue of the generalization algorithm. The essence
of the Jones’s idea is to manipulate by the transformations {q1, q2, . . . , qm} by
means of the BTA only; and the result of such manipulation must be given as
an input to the second transformation stage manipulating only the second part
of the elementary transformations. Such a partition immediately leads to disas-
trous effects. To feel deeply what the effects are let us once again consider the
TM example. Let us apply the Jones’ idea to the basic TM’s operators6

{t1, . . . , moveto left, moveto right, . . . , tk}

and part this collection in two ones:

{t1, . . . , moveto left} and {moveto right, . . . , tk}.

Now according to partial evaluation we have to separately manipulate by the
operators {t1, . . . , moveto left} and just after that we are allowed to use the
second part of the operators. Manipulation of the whole collection of the TM’s
operators provides possibility for generating any algorithm. But what can be
programmed if we will follow the Jones’ idea? The answer is trivial!

6 Here moveto left and moveto right stand for the operators moving the TM’s head.
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