
Higher-Order Functions as a Substitute for
Partial Evaluation

(A Tutorial)?

Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
romansa@keldysh.ru

Abstract. This tutorial shows how to rewrite an interpreter written in
a higher-order functional language, so that it will become more similar
to a compiler, thereby eliminating the overhead due to interpretation.

1 Defining a language by means of an interpreter

When writing programs in a functional language, it is fairly easy to “extend”
the language by defining an interpreter run, which will take a program prog,
and some input data d, and return the result of applying prog to d:

run prog d

Hence, in this way the programmer can include in his program pieces written
in the language implemented by run. run is usually said to give an operational
semantics for the language thus defined.

Unfortunately, an interpreter written in a straightforward way is likely to
introduce a considerable overhead.

However, the overhead can be reduced by refactoring a näıve interpreter in
such a way that it becomes more similar to a compiler. The refactoring is based
on replacing some first-order functions with higher-order ones.

2 An example interpreter

For the user to feel comfortable, run should accept programs written in human-
oriented form, which can be achieved with the aid of quotation/antiquotation
mechanism as usually implemented by Standard ML implementations. The tech-
niques of translating programs from the “concrete” syntax into the abstract syn-
tax are well known, and will not be considered in this paper. Hence, for the sake
? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a and

No. 08-07-00280-a and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.



146 Sergei A. Romanenko

datatype exp =

INT of int

| VAR of string

| BIN of string * exp * exp

| IF of exp * exp * exp

| CALL of string * exp list

type prog =

(string * (string list * exp)) list;

Fig. 1. Abstract syntax of programs.

val fact_prog =

[

("fact", (["x"],

IF(

BIN("=", VAR "x", INT 0),

INT 1,

BIN("*",

VAR "x",

CALL("fact",

[BIN("-", VAR "x", INT 1)])))

))

];

Fig. 2. A program in abstract syntax.

of simplicity, run is supposed to accept programs represented by abstract syntax
trees.

As an example, we shall consider a function run having type

val run : prog -> int list -> int

A program will be a list of mutually recursive first-order function definitions,
each function accepting a fixed number of integer arguments, and returning an
integer. The abstract syntax of programs is shown in Figure 1.

For example, the well-known factorial function

fun fact x =
if x = 0 then 1 else x * fact (x-1)

when written in abstract syntax, takes the form shown in Figure 2. Combining
the interpreter run and the program fact_prog, we can define the function fact
computing factorials of integers:



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 147

fun eval prog ns exp vs =

case exp of

INT i => i

| VAR n =>

getVal (findPos ns n) vs

| BIN(name, e1, e2) =>

(evalB name) (eval prog ns e1 vs,

eval prog ns e2 vs)

| IF(e0, e1, e2) =>

if eval prog ns e0 vs <> 0

then eval prog ns e1 vs

else eval prog ns e2 vs

| CALL(fname, es) =>

let

val (ns0, body0) =

lookup prog fname

val vs0 =

evalArgs prog ns es vs

in eval prog ns0 body0 vs0 end

and evalArgs prog ns es vs =

map (fn e => eval prog ns e vs) es

fun run (prog : prog) vals =

let val (_, (ns0, body0)) = hd prog

in eval prog ns0 body0 vals end

Fig. 3. First-order interpreter.

fun fact x = run fact_prog [x];
fact 4;

The interpreter run can be defined in a straightforward way (see Figure 3).
Some auxiliary declarations used in this interpreter (and further examples) can
be found in Figures 4 and 5.

3 Denotational definition

If the program being executed contains a loop, the interpreter may analyze the
same fragments of the source program again and again, which slows down the
execution. Let us try to eliminate this overhead by rewriting our interpreter in
denotational style.



148 Sergei A. Romanenko

fun findPos ns n =

let fun loop [] i = raise Fail "findPos"

| loop (n0::ns) i =

if n = n0 then i

else loop ns (i+1)

in loop ns 0 end

fun getVal 0 vs = hd vs

| getVal n vs = getVal (n-1) (tl vs)

fun lookup [] n = raise Fail "lookup"

| lookup ((k,v) :: rest) n =

if k=n then v else lookup rest n

Fig. 4. Look-up functions.

fun evalB "+" = op +

| evalB "-" = op -

| evalB "*" = op *

| evalB "=" =

(fn(x, y) => if x = y then 1 else 0)

| evalB _ : int * int -> int =

(raise Fail "evalB")

Fig. 5. Meaning of primitive operators.

3.1 What is a denotational definition?

A denotational definition is essentially a compiler that maps the source pro-
gram prog into its “meaning” [[prog]], a function that, given the input data, will
produce the result of running prog with that input.

There is an additional requirement any denotational definition must satisfy:
namely, the meaning of each program fragment must be formulated in terms of
the meanings of its constituent parts. The interpreter in Figure 3 violates this
requirement, because the function eval takes as arguments both an expression
and the whole program. Hence the meaning of an expression is defined via the
meaning of the whole program.

This subtle point can be illustrated by contrasting two definitions of the
Pascal construct while exp do st .

The semantics of statements can be given via a function evalS, which takes
as arguments a statement st and a store s, and returns a new store evalS st s .

Figure 6 shows a version of evalS that is not denotational, because evalS
recursively calls itself passing as argument the same fragment of the source



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 149

fun evalS (WHILE(exp, st)) s =

if evalE exp s then

evalS(WHILE(exp, st))

(evalS st s)

else s

| evalS (ASSIGN(id, exp)) s = ...

...

Fig. 6. An operational definition of the while loop.

fun evalS (WHILE(exp, st)) s =

let fun loop s =

if evalE exp s then

loop(evalS st s)

else s

in loop s end

| evalS (ASSIGN(id, exp)) s = ...

...

Fig. 7. A denotational definition of the while loop.

program: the whole construct while. This definition, however, can be “rectified”
by introducing an auxiliary function loop (see Figure 7). Now the meaning of
WHILE(exp,st) is expressed in terms of the meanings of exp and st !

3.2 Turning the interpreter into a denotational definition

We may turn our interpreter into a denotational definition by replacing the
parameter containing the text of the program with a function environment φ,
mapping function names onto their meanings (see Figure 8). Hence, the meaning
of an expression depends only upon the meanings of its constituent subexpres-
sions (and is defined with respect to some function environment).

The only problem is how to find the function environment φ corresponding
to the whole program. If the denotational definition is written in a lazy program-
ming language, φ can be given a circular definition

val rec phi = ... phi ...

in which case phi will be found as the “least fixed point” of the above equation.
But, if the denotational definition is to be written in a strict language (like
SML), the right hand side of a recursive equation must be a λ-abstraction. This
restriction will be satisfied, if we rewrite the equation as



150 Sergei A. Romanenko

fun eval phi ns exp vs =

case exp of

INT i => i

| VAR n => getVal(findPos ns n) vs

| BIN(name, e1, e2) =>

(evalB name) (eval phi ns e1 vs,

eval phi ns e2 vs)

| IF(e0, e1, e2) =>

if eval phi ns e0 vs <> 0

then eval phi ns e1 vs

else eval phi ns e2 vs

| CALL(fname, es) =>

phi fname (evalArgs phi ns es vs)

and evalArgs phi ns es vs =

map (fn e => eval phi ns e vs) es

fun run (prog : prog) =

let

fun phi fname =

let val (ns, e) = lookup prog fname

in eval phi ns e end

val (_, (ns0, e0)) = hd prog

in eval phi ns0 e0 end

Fig. 8. Denotational definition.

fun phi fname = ... phi ...

See the declaration of run in Figure 8 for technical details.

3.3 Representing loops by cyclic data structures

The drawback of the denotational definition in Figure 8 is that, instead of rep-
resenting the loops appearing in the source program by a cyclic data structure,
we, first, replace it with a non-cyclic—but infinite—tree, and then unroll that
tree incrementally.

However, we can represent the function environment as a finite graph by
making use of some “imperative features” of Standard ML (see Figure 9).

The constructor ref creates “memory locations”. When applied to a value v,
it creates a new location, v being the initial contents of the location, and returns
a reference to the location. The function ! , when applied to a reference, returns
a copy of the contents of the corresponding location. The assignment E1:=E2

evaluates E1, which must return a reference to a location, and E2. Then the
contents of the location is replaced with the value returned by E2.



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 151

fun eval phi ns exp vs =

case exp of

INT i => i

| VAR n => getVal (findPos ns n) vs

| BIN(name, e1, e2) =>

(evalB name) (eval phi ns e1 vs,

eval phi ns e2 vs)

| IF(e0, e1, e2) =>

if eval phi ns e0 vs <> 0

then eval phi ns e1 vs

else eval phi ns e2 vs

| CALL(fname, es) =>

let val r = lookup phi fname

in (!r) (evalArgs phi ns es vs) end

and evalArgs phi ns es vs =

map (fn e => eval phi ns e vs) es

fun dummyEval (vs : int list) : int =

raise Fail "dummyEval"

fun app f [] = ()

| app f (x :: xs) =

(f x : unit; app f xs)

fun run (prog : prog) =

let

val phi =

map (fn (n,_) => (n, ref dummyEval))

prog

val (_, r0) = hd phi

in

app (fn (n, (ns, e)) =>

(lookup phi n) := eval phi ns e)

prog;

!r0

end

Fig. 9. Using references to represent cycles in the call graph.

The function run builds the environment phi by creating a separate location
for each function definition and associating the function’s name with the location.
Then the location is assigned the meaning of the function definition.



152 Sergei A. Romanenko

4 Separating binding times

4.1 Being denotational is not enough

Theoretically, the denotational definition in Figure 9 transforms a function into
its meaning. But, if we examine it more closely, we can easily find out that it
can hardly be called a “compiler”: the function eval does not compute anything,
before it has been given parameter vs, the values of variables.

One of the consequences is that, if the source program contains loops, the
same subexpressions may be analyzed and “compiled” again and again.

We may however improve the definition, by applying a few techniques devel-
oped in the framework of lazy programming languages.

4.2 Binding times

When an expression like

(fn x => fn y => fn z => e)

is applied, x is bound before y, which again is bound before z. According to
[Hol90], we call the variables that are bound first early and the ones that are
bound later late. The early variables will be said to be more static than the late
ones, whereas the late variables will be said to be more dynamic than the earlier
ones.

4.3 Lifting static subexpressions

Consider the declarations

val h = fn x => fn y => sin x * cos y
val h’ = h 0.1
val v = h’ 1.0 + h’ 2.0

When h’ is declared, no real evaluation takes place, because the value of y is
not known yet. Hence, sin 0.1 will be evaluated twice, when evaluating the
declaration of v. This can be avoided if we rewrite the declaration of h in the
following way:

val h = fn x =>
let val sin_x = sin x
in fn y => sin_x * cos y end

The transformation of that kind (see [Hol90]), when applied to a program in a
lazy language is known as transforming the program to a “fully lazy form”1.

Now by lifting static subexpressions in the denotational definition of the
while loop (shown in Figure 7), we can obtain an improved definition shown in
Figure 10.
1 Needless to say that in the case of a strict language such transformation may be

unsafe, because it may change termination properties of the program. For example,
if we replace sin x with monster x, where monster is an ill-behaved function, the
evaluation of monster 0.1 may never terminate!



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 153

fun evalS (WHILE(exp, st)) s =

let

val c1 = evalE exp

val c2 = evalS st

fun loop s =

if c1 s then loop(c2 s)

else s

in loop s end

| evalS (ASSIGN(id, exp)) s = ...

...

Fig. 10. The result of lifting static subexpressions in the definition of the while
loop.

4.4 Liberating control

Consider the expression

fn x => fn y =>
if (p x) then (f x y) else (g x y)

If we apply the transformation described above, we can avoid reevaluating (p x):

fn x =>
let val p_x = p x
in fn y =>
if p_x then (f x y) else (g x y)

end

The question is whether f x and g x should be lifted too. If we lift both f x
and g x, this will result in unnecessary computation, because either the value
of f x or g x will be thrown away. If e do not lift them, either f x or g x
will be repeatedly reevaluated.

Another deficiency of the above solution is that the conditional remains in-
side the inner λ-abstraction. Hence, the choice between the two branches of the
conditional is not made, until the value of y becomes known. (Despite the fact
that the value of the test p x is evaluated as soon as the value of x has been
supplied.)

Fortunately, this difficulty can be overcome by means of another trick: instead
of lifting the test from within fn y => ..., we can push fn y => over if p x
into the branches of the conditional!

Thus the expression can be rewritten as:

fn x =>
if p x then
fn y => (f x y)



154 Sergei A. Romanenko

else
fn y => (g x y)

and then as

fn x =>
if p x then
let val f_x = f x
in (fn y => f_x y) end

else
let val g_x = g x
in (fn y => g_x y) end

which enables us to avoid unnecessary as well as repeated evaluation2.
Similarly, fn y => can be pushed into other control constructs, containing

conditional branches. For example,

fn x => fn y =>
case f x of

A => g x y
| B => h x y

can be rewritten as

fn x =>
case f x of

A => fn y => g x y
| B => fn y => h x y

and then as

fn x =>
case f x of

A => let val g_x = g x
in fn y => g_x y end

| B => let val h_x = h x
in fn y => h_x y end

The above transformation is usually applied to programs written in a lazy
language to achieve “improved full laziness” [Hol89,Hol90], but can also be ap-
plied to programs in a strict language. In the latter case, however, it may not
preserve termination properties of the program (which is also true of the trans-
formations performed by some automatic program specializers).

2 See, however, the previous footnote.



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 155

4.5 Separating binding times in the interpreter

Now let’s return to the version of the interpreter in Figure 9, and try to separate
the static computations, which depend only on the text of the source program,
from the dynamic ones, which may also depend on the input data.

The function run is good enough already, and need not be revised. So let’s
consider the definition of the function eval. It has the form

fun eval phi ns exp vs =
case exp of
INT i => i

...

First of all, let’s move vs to the right hand side:

fun eval phi ns exp =
fn vs =>
case exp of
INT i => i

...

Now we can push fn vs => into the case construct:

fun eval phi ns exp =
case exp of
INT i => (fn vs => i)

...

so that the right hand side of each match rule begins with fn vs =>, and can
be transformed further, independently from the other right hand sides.

The final result of the transformations is shown in Figure 11. In the case of the
rules corresponding to INT, BIN, and IF, the transformation is straightforward:
we just lift static subexpressions. In the case of VAR, the right hand side takes
the form

fn vs => getVal (findPos ns n) vs

and we can perform η-reduction

getVal (findPos ns n)

Then we have to improve the definition of getVal. Again, this can be done by
moving vs to the right hand sides, and by applying η-reductions and lifting static
subexpressions. The revised version of getVal is shown in Figure 11 under the
name getVal’.

By the way, we could also circumvent the explicit lifting of static subexpres-
sions, by formulating the definition of getVal in terms of the infix operation o,
the composition of functions:

fun getVal’ 0 = hd
| getVal’ n = getVal’ (n-1) o tl



156 Sergei A. Romanenko

fun getVal’ 0 = hd

| getVal’ n =

let val sel = getVal’ (n-1)

in fn vs => sel (tl vs) end

fun eval phi ns exp =

case exp of

INT i => (fn vs => i)

| VAR n =>

getVal’(findPos ns n)

| BIN(name, e1, e2) =>

let val b = evalB name

val c1 = eval phi ns e1

val c2 = eval phi ns e2

in (fn vs => b (c1 vs, c2 vs)) end

| IF(e0, e1, e2) =>

let val c0 = eval phi ns e0

val c1 = eval phi ns e1

val c2 = eval phi ns e2

in fn vs =>

if c0 vs <> 0 then c1 vs

else c2 vs

end

| CALL(fname, es) =>

let

val r = lookup phi fname

val c = evalArgs phi ns es

in fn vs => (!r) (c vs) end

and evalArgs phi ns [] = (fn vs => [])

| evalArgs phi ns (e :: es) =

let val c’ = eval phi ns e

val c’’ = evalArgs phi ns es

in fn vs => c’ vs :: c’’ vs end

Fig. 11. The result of lifting static subexpressions.

This solution appears to be more elegant, but finding it requires more “insight”.
(Besides, it is less efficient.)

Now let’s consider the right hand side of the rule corresponding to CALL.

fn vs =>
let val r = lookup phi fname
in (!r) (evalArgs phi ns es vs) end

Here the subexpressions lookup phi fname and evalArgs phi ns es are
static, and we just lift them out of the λ-abstraction.



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 157

Finally, we have to transform the definition of evalArgs, which can be done
in two steps. First, we can replace the call to the higher-order function map with
explicit recursion:

and evalArgs phi ns [] vs = []
| evalArgs phi ns (e :: es) vs =

eval phi ns e vs ::
evalArgs phi ns es vs

After that the techniques described above become applicable.
In the end, we come to the definition of run in Figure 11, which “compiles”

the source program into a composition of λ-abstractions, representing the mean-
ing of the source program. Since the revised run examines a fragment of the
source program no more than once, it is much closer to a compiler, than to an
interpreter.

5 Higher-order functions with separated binding times

When separating binding times in our example interpreter, we had to replace
a call to the “general-puprose” functional map with explicit recursion. This is
evidently against the spirit of the “high-order” programming, for the possibility
to use functionals is one of its main attractive features.

5.1 Separating for free!

Holst and Hughes [HH90] suggest that binding times should be separated by
applying commutative-like laws, which can be derived from the types of poly-
morphic functions using the “free-theorem” approach [Wad89].

In our case a suitable law is

map (d o s) xs = map d (map s xs)

because, if s and xs are static subexpressions, and d a dynamic one, then
map s xs is a static subexpresion, which can be subsequently lifted out of the
dynamic context.

In the interpreter in Figure 9, the expression

map (fn e => eval phi ns e vs) es

can be transformed into

map ((fn c => c vs) o (eval phi ns)) es

and then into

map (fn c => c vs)
(map (eval phi ns) es)

Now the subexpression



158 Sergei A. Romanenko

(map (eval phi ns) es)

is purely static, and can be lifted out.
A drawback of the above solution is that an intermediate list of pre-computed

functions has to be generated. Then this list will be repeatedly interpreted by
the outer call to map. Note that the length of the intermediate list is statically
determined by the list es, but the outer map makes no use of that fact.

5.2 Specialized general-purpose functionals

It seems that the weakness of the “free-theorem” approach is that the solution
has to be expressed in terms of the functionals that are already present in the
program being transformed. But, as shown by Holst and Gomard [HG91], it
is possible to eat the cake and have it too: namely, to let functionals express
recursion in the transformed program without introducing intermediate data
structures. This can be achieved by introducing transformed versions of func-
tionals.

Let’s return to the expression

map d (map s xs)

The difficulty here is that we can’t combine two occurrences of map into a single
static expression. To achieve that, we need to swap the arguments of the outer
map. So, let’s introduce a new function

fun map’ xs f = map f xs

Now we can rewrite map d (map s xs) as map’ (map s xs) d, and the subex-
pression map’ (map s xs) becomes purely static! Unfortunately, our joy is
somewhat premature, because map’ as defined above will not do anything, before
it has been given both arguments. We can however develop a better definition
for map’, that will start to work as soon as it is given only the first argument.

First, let’s write down an explicit recursive definition of map’:

fun map’ xs f = []
| map’ (x :: xs) f =

f x :: map’ xs f

Now we can apply the standard techniques described in Section 4: f should be
rearranged to the right hand sides, and the static subexpressions lifted. The
result is

fun map’ xs = (fn f => [])
| map’ (x :: xs) =

let val c = map’ xs
in fn f => f x :: c f end

Now the expression



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 159

map (fn c => c vs)
(map (eval phi ns) es)

can be transformed into

map’ (map (eval phi ns) es)
(fn c => c vs)

where map’ (map (eval phi ns) es) is static.
This solution is not perfect, however: the intermediate list of functions will

still be generated by the inner map and immediately consumed by the outer
map’3.

This is due to the generality of map’, which is excessive in our particular case.
After all, our goal was to separate binding times in map (d o s) xs, and the
decision to reduce this expression to map d (map s xs) seems to be justified
by nothing, except for our “insight” and voluntarism.

A more straightforward approach is to introduce a specialized functional

fun map_dos s xs d = map (d o s) xs

whose direct definition is

fun map_dos s [] d = []
| map_dos s (x :: xs) d =

d (s x) :: map_dos s xs d

which, upon separating binding times, takes the form

fun map_dos s [] = (fn d => [])
| map_dos s (x :: xs) =

let val x1 = s x
val x2 = map_dos s xs

in fn d => d x1 :: x2 d end

Now the expression

map ((fn c => c vs) o (eval phi ns)) es

can be rewritten as

map_dos (eval phi ns) es (fn c => c vs)

A minor deficiency of that definition is that a strange auxiliary function
fn c => c vs has had to be introduced. This can be rectified, if we return to
the initial expression

map (fn e => eval phi ns e vs) es

which is a special case of
3 Unlike the previous solution, this list will be consumed only once, at “compile-time”,

rather than each time the value of vs is supplied.



160 Sergei A. Romanenko

map (fn x => s x d) xs

Thus let’s introduce the functional

fun map_sxd s xs d =
map (fn x => s x d) xs

Defining it in terms of explicit recursion

fun map_sxd s [] d = []
| map_sxd s (x :: xs) d =

s x d :: map_sxd s xs d

and separating binding times, we obtain

fun map_sxd s [] = (fn d => [])
| map_sxd s (x :: xs) =

let val c1 = s x
val c2 = map_sxd s xs

in fn d => c1 d :: c2 d end

Now the expression

map (fn e => eval phi ns e vs) es

can be rewritten as

map_sxd (eval phi ns) es vs

5.3 Static values under dynamic control

Consider the expression

fn s => fn d => s (if d then 1 else 2)

in which the test in the conditional is dynamic, whereas both its branches are
static. Hence, the choice between the two branches cannot be made until the
value of d becomes known, for which reason the application of s gets delayed
too.

Nevertheless, if we push s into the conditional

fn s => fn d => if d then s 1 else s 2

the applications of s become static, so that they can be lifted out of fn d => :

fn s =>
let val x1 = s 1 and x2 = s 2
in fn d => if d then x1 else x2 end



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 161

This works fine, if a static function s is immediately applied to a dynamic
conditional, but s may be applied to a function call s (f d) , where the body of
the definition of f is known to contain dynamic conditionals with static branches.
In this case we need a trick to propagate the application of s to the static values.

This trick may consist in rewriting the function f in continuation-passing
style, or CPS [HG91]. Namely, f is replaced with f’, its version in CPS, such
that s(f d) = f’ s d .

For example, let’s consider the function lookup in Figure 4, and the expres-
sion

s (lookup kvs d)

where s and kvs are static, and d dynamic. Since the definition of lookup con-
tains a conditional with a dynamic test

if k=n then v else lookup rest n

the result of the function is dynamic too. However, if we rewrite the definition
of lookup in CPS

fun lookup’ c [] n =
c (raise Fail "lookup")

| lookup’ c ((k,v) :: rest) n =
if k=n then c v

else lookup’ c rest n

and separate binding times

fun lookup’ c [] =
fn n => c (raise Fail "lookup")

| lookup’ c ((k,v) :: rest) =
let val x1 = c v

val x2 = lookup’ c rest
in
fn n =>
if k=n then x1 else x2 n

end

the expression s (lookup kvs d) can be rewritten as lookup’ s kvs d ,
where the subexpression lookup’ s kvs is purely static.

6 Conclusions

If we write language definitions in a first-order language, we badly need a partial
evaluator in order to remove the overhead introduced by the interpretation.
But, if our language provides functions as first-class values, an interpreter can
be relatively easily rewritten in such a way that it becomes more similar to a
compiler, rather than to an interpreter.

The language in which the interpreters are written need not be a lazy one,
but, if the language is strict, some attention should be paid by the programmer
to preserving termination properties of the program being transformed.



162 Sergei A. Romanenko

References

[Hol89] Carsten Kehler Holst. Syntactic currying: yet another approach to partial eval-
uation. Student report 89-7-6, DIKU, University of Copenhagen, Denmark,
July 1989.

[Hol90] Carsten Kehler Holst. Improving full laziness. In Simon L. Peyton Jones,
Graham Hutton, and Carsten Kehler Holst, editors, Functional programming,
Ullapool, Scotland, 1990, Springer-Verlag.

[HH90] Carsten Kehler Holst and John Hughes. Towards improving binding times for
free! In Simon L. Peyton Jones, Graham Hutton, and Carsten Kehler Holst,
editors, Functional programming, Ullapool, Scotland, 1990, Springer-Verlag.

[HG91] Carsten Kehler Holst and Carsten Krogh Gomard. Partial evaluation is fuller
laziness. In Partial Evaluation and Semantics-Based Program Manipulation,
New Haven, Connecticut. (Sigplan Notices, vol. 26, no.9, September 1991),
pages 223–233, ACM, 1991.

[Wad89] Philip Wadler. Theorems for free! In Functional Programming Languages and
Computer Architectures, pages 347–359, London, September 1989. ACM.


